que abordó el problema de escribir mi propia aplicación antes de mirar a su código.Mi primer intento fue muy similar a lo que ya tenía :)
%# some parameters
NUM_ITER = 100000; %# number of simulations to run
DRAW_SZ = 12; %# number of cards we are dealing
SET_SZ = 3; %# number of cards in a set
FEAT_NUM = 4; %# number of features (symbol,color,number,shading)
FEAT_SZ = 3; %# number of values per feature (eg: red/purple/green, ...)
%# cards features
features = {
'oval' 'squiggle' 'diamond' ; %# symbol
'red' 'purple' 'green' ; %# color
'one' 'two' 'three' ; %# number
'solid' 'striped' 'open' %# shading
};
fIdx = arrayfun(@(k) grp2idx(features(k,:)), 1:FEAT_NUM, 'UniformOutput',0);
%# list of all cards. Each card: [symbol,color,number,shading]
[W X Y Z] = ndgrid(fIdx{:});
cards = [W(:) X(:) Y(:) Z(:)];
%# all possible sets: choose 3 from 12
setsInd = nchoosek(1:DRAW_SZ,SET_SZ);
%# count number of valid sets in random draws of 12 cards
counterValidSet = 0;
for i=1:NUM_ITER
%# pick 12 cards
ord = randperm(size(cards,1));
cardsDrawn = cards(ord(1:DRAW_SZ),:);
%# check for valid sets: features are all the same or all different
for s=1:size(setsInd,1)
%# set of 3 cards
set = cardsDrawn(setsInd(s,:),:);
%# check if set is valid
count = arrayfun(@(k) numel(unique(set(:,k))), 1:FEAT_NUM);
isValid = (count==1|count==3);
%# increment counter
if isValid
counterValidSet = counterValidSet + 1;
break %# break early if found valid set among candidates
end
end
end
%# ratio of found-to-notfound
fprintf('Size=%d, Set=%d, NoSet=%d, Set:NoSet=%g\n', ...
DRAW_SZ, counterValidSet, (NUM_ITER-counterValidSet), ...
counterValidSet/(NUM_ITER-counterValidSet))
Después de usar el Analizador de descubrir los puntos calientes, algunas mejoras se pueden hacer sobre todo a principios-break'ing de bucles cuando sea posible. El cuello de botella principal es la llamada a la función ÚNICA. Esas dos líneas anteriores, donde comprobamos para conjuntos válidos pueden reescribirse como:
%# check if set is valid
isValid = true;
for k=1:FEAT_NUM
count = numel(unique(set(:,k)));
if count~=1 && count~=3
isValid = false;
break %# break early if one of the features doesnt meet conditions
end
end
Por desgracia, la simulación sigue siendo lento para la simulación más grande. Por lo tanto, mi próxima solución es una versión vectorizada, donde para cada iteración, construimos una matriz única de todos los conjuntos posibles de 3 cartas de la mano de 12 cartas dibujadas. Para todos estos conjuntos candidatos, usamos vectores lógicos para indicar qué característica está presente, evitando así las llamadas a UNIQUE/NUMEL (queremos características iguales o todas diferentes en cada tarjeta del conjunto).
Admito que el código ahora es menos legible y más difícil de seguir (así que publiqué ambas versiones para comparar). La razón es que traté de optimizar el código tanto como sea posible, de modo que cada ciclo de iteración esté completamente vectorizado. Aquí está el código final:
%# some parameters
NUM_ITER = 100000; %# number of simulations to run
DRAW_SZ = 12; %# number of cards we are dealing
SET_SZ = 3; %# number of cards in a set
FEAT_NUM = 4; %# number of features (symbol,color,number,shading)
FEAT_SZ = 3; %# number of values per feature (eg: red/purple/green, ...)
%# cards features
features = {
'oval' 'squiggle' 'diamond' ; %# symbol
'red' 'purple' 'green' ; %# color
'one' 'two' 'three' ; %# number
'solid' 'striped' 'open' %# shading
};
fIdx = arrayfun(@(k) grp2idx(features(k,:)), 1:FEAT_NUM, 'UniformOutput',0);
%# list of all cards. Each card: [symbol,color,number,shading]
[W X Y Z] = ndgrid(fIdx{:});
cards = [W(:) X(:) Y(:) Z(:)];
%# all possible sets: choose 3 from 12
setsInd = nchoosek(1:DRAW_SZ,SET_SZ);
%# optimizations: some calculations taken out of the loop
ss = setsInd(:);
set_sz2 = numel(ss)*FEAT_NUM/SET_SZ;
col = repmat(1:set_sz2,SET_SZ,1);
col = FEAT_SZ.*(col(:)-1);
M = false(FEAT_SZ,set_sz2);
%# progress indication
%#hWait = waitbar(0./NUM_ITER, 'Simulation...');
%# count number of valid sets in random draws of 12 cards
counterValidSet = 0;
for i=1:NUM_ITER
%# update progress
%#waitbar(i./NUM_ITER, hWait);
%# pick 12 cards
ord = randperm(size(cards,1));
cardsDrawn = cards(ord(1:DRAW_SZ),:);
%# put all possible sets of 3 cards next to each other
set = reshape(cardsDrawn(ss,:)',[],SET_SZ)';
set = set(:);
%# check for valid sets: features are all the same or all different
M(:) = false; %# if using PARFOR, it will complain about this
M(set+col) = true;
isValid = all(reshape(sum(M)~=2,FEAT_NUM,[]));
%# increment counter if there is at least one valid set in all candidates
if any(isValid)
counterValidSet = counterValidSet + 1;
end
end
%# ratio of found-to-notfound
fprintf('Size=%d, Set=%d, NoSet=%d, Set:NoSet=%g\n', ...
DRAW_SZ, counterValidSet, (NUM_ITER-counterValidSet), ...
counterValidSet/(NUM_ITER-counterValidSet))
%# close progress bar
%#close(hWait)
Si usted tiene la caja de herramientas de procesamiento en paralelo, se puede sustituir fácilmente a la llanura bucle-FOR con una parfor paralelo (es posible que desee mover la inicialización de la matriz M
dentro del bucle de nuevo : sustituir M(:) = false;
con M = false(FEAT_SZ,set_sz2);
)
Estas son algunas salidas de muestra de 50000 simulaciones (parfor utilizados con un grupo de 2 instancias locales):
» tic, SET_game2, toc
Size=12, Set=48376, NoSet=1624, Set:NoSet=29.7882
Elapsed time is 5.653933 seconds.
» tic, SET_game2, toc
Size=15, Set=49981, NoSet=19, Set:NoSet=2630.58
Elapsed time is 9.414917 seconds.
y con un millón de iteraciones (parfor para 12, no-parfor para 15):
» tic, SET_game2, toc
Size=12, Set=967516, NoSet=32484, Set:NoSet=29.7844
Elapsed time is 110.719903 seconds.
» tic, SET_game2, toc
Size=15, Set=999630, NoSet=370, Set:NoSet=2701.7
Elapsed time is 372.110412 seconds.
El odds ratio de acuerdo con los resultados reportados por Peter Norvig.
No tengo un cálculo para ti, y no hablo matlab, pero tropecé con tu pregunta, que me recordó el set-game que programé el año pasado en scala, y que quería publicar en carne fresca - pero: no hay tiempo para eso. Ahora encontré tiempo para traducir algunos vars alemanes, comentarios y mensajes al inglés, y ponerlo en un [sitio web para descargar] (http://home.arcor.de/hirnstrom/minis/index.html#setgame); el anuncio de la carne fresca todavía tomará algunas horas. Veré qué tan adecuado es para calcular el número de conjuntos en una página. –