probar esto. Todos los bucles son for
bucles, por lo que puede agregar fácilmente más cálculos.
#Set the number of bets and number of trials and % lines
numbet <- 6000 #6000 bets
numtri <- 1000 #Run 1000 trials of the 6000 bets
perlin <- 0.05 #Show the +/- 5% lines on the graph
rantri <- 60 #The 60th trial (just a random trial to be drawn)
#Fill a matrix where the rows are the cumulative bets and the columns are the trials
xcum <- matrix(NA, nrow=numbet, ncol=numtri)
for (i in 1:numtri) {
x <- sample(c(-1,1), numbet, replace = TRUE)
xcum[,i] <- cumsum(x)
}
#Plot the trials as transparent lines so you can see the build up
matplot(xcum, type="l", xlab="Number of Bets", ylab="Cumulative Sum", main="Cumulative Results", col=rgb(0.01, 0.01, 0.01, 0.02))
grid()
#Sort the trials of each bet so you can pick out the desired %
xcumsor <- xcum
for (i in 1:numbet) {
xcumsor[i,] <- xcum[i,order(xcum[i,])]
}
#Draw the upper/lower limit lines and the 50% probability line
lines(xcumsor[, perlin*numtri], type="l", lwd=2, col=rgb(1, 0.0, 0.0)) #Lower limit
lines(xcumsor[, 0.5*numtri], type="l", lwd=3, col=rgb(0, 1, 0.0)) #50% Line
lines(xcumsor[, (1-perlin)*numtri], type="l", lwd=2, col=rgb(1, 0.0, 0.0)) #Upper limit
#Show one of the trials
lines(xcum[, rantri], type="l", lwd=1, col=rgb(1, 0.8, 0)) #Random trial
#Draw the legend
legend("bottomleft", legend=c("Various Trials", "Single Trial", "50% Probability", "Upper/Lower % Limts"), bg="white", lwd=c(1, 1, 3, 2), col=c("darkgray", "orange", "green", "red"))
EDIT 1 ==================================== ======================
Si solo está tratando de dibujar las líneas +/- 5%, es solo una función de raíz cuadrada. Aquí está el código:
#Set the bet sequence and the % lines
betseq <- 1:100000 #1 to 100,000 bets
perlin <- 0.05 #Show the +/- 5% lines on the graph
#Calculate the Upper and Lower limits using perlin
#qnorm() gives the multiplier for the square root
upplim <- qnorm(1-perlin)*sqrt(betseq)
lowlim <- qnorm(perlin)*sqrt(betseq)
#Get the range for y
yran <- range(upplim, lowlim)
#Plot the upper and lower limit lines
plot(betseq, upplim, ylim=yran, type="l", xlab="", ylab="")
lines(betseq, lowlim)
Editar 2 ================================ ==================
Para agregar las parábolas en las ubicaciones correctas, probablemente sea más fácil si define una función. Tenga en cuenta que debido a que la nueva función (dralim
) usa lines
, la trama debe existir antes de llamar al dralim
. Usando algunas de las mismas variables que el código en Edición 1:
#Set the bet sequence and the % lines
betseq <- 0:700 #0 to 700 bets
perlin <- 0.05 #Show the +/- 5% lines on the graph
#Define a function that plots the upper and lower % limit lines
dralim <- function(stax, endx, perlin) {
lines(stax:endx, qnorm(1-perlin)*sqrt((stax:endx)-stax))
lines(stax:endx, qnorm(perlin)*sqrt((stax:endx)-stax))
}
#Build the plot area and draw the vertical dashed lines
plot(betseq, rep(0, length(betseq)), type="l", ylim=c(-50, 50), main="", xlab="Trial Number", ylab="Cumulative Hits")
abline(h=0)
abline(v=35, lty="dashed") #Seg 1
abline(v=185, lty="dashed") #Seg 2
abline(v=385, lty="dashed") #Seg 3
abline(v=485, lty="dashed") #Seg 4
abline(v=585, lty="dashed") #Seg 5
#Draw the % limit lines that correspond to the vertical dashed lines by calling the
#new function dralim.
dralim(0, 35, perlin) #Seg 1
dralim(36, 185, perlin) #Seg 2
dralim(186, 385, perlin) #Seg 3
dralim(386, 485, perlin) #Seg 4
dralim(486, 585, perlin) #Seg 5
dralim(586, 701, perlin) #Seg 6
@ bill_080 muy, muy agradable. Si miras mi perfil verás que tengo algo para las tramas de lanzamiento de moneda y que la tuya es una belleza. Lo único es que quizás sea demasiado complicado para mí. :) –
@RSoul, agregué otra gráfica con el código asociado. Muestra los límites superior/inferior para las líneas del 5%.Es solo la raíz cuadrada del número de apuesta multiplicado por el% de probabilidad que desea. En el código, la función 'qnorm()' te da el multiplicador. Para 5%, 'qnorm (0.05)' da -1.644 y 'qnorm (0.95)' da 1.644. –
@ bill_080 Eso es excelente. Exactamente lo que quería. Es por eso que he reconocido a los usuarios de StackOverflow.com en mi tesis. Muchas gracias. Puedo usar tu argumento más interesante. Todavía tengo que decidir. –