Recientemente también fui por este camino; aunque parece que mi aplicación fue ligeramente diferente. Estaba interesado en aproximar operaciones de conjunto en una gran cantidad de cadenas.
Usted hace la observación clave de que se requiere un vector de bits rápido. Dependiendo de lo que quieras poner en tu filtro bloom, también deberás pensar en la velocidad del algoritmo hash utilizado. Puede encontrar este library útil. También es posible que desee jugar con la técnica de números aleatorios que se utiliza a continuación que solo hashes su clave una sola vez.
En términos de implementaciones de matriz de bits no Java:
construí mi filtro Bloom usando BitVector. Pasé algún tiempo perfilando y optimizando la biblioteca y contribuyendo con mis parches a Avi. Vaya a ese enlace de BitVector y desplácese hacia abajo hasta los reconocimientos en v1.5 para ver detalles. Al final, me di cuenta de que el rendimiento no era un objetivo de este proyecto y decidí no usarlo.
Aquí hay un código que tenía por ahí. Puedo poner esto en el código de google en python-bloom. Sugerencias bienvenidas.
from BitVector import BitVector
from random import Random
# get hashes from http://www.partow.net/programming/hashfunctions/index.html
from hashes import RSHash, JSHash, PJWHash, ELFHash, DJBHash
#
# [email protected]/www.asciiarmor.com
#
# copyright (c) 2008, ryan cox
# all rights reserved
# BSD license: http://www.opensource.org/licenses/bsd-license.php
#
class BloomFilter(object):
def __init__(self, n=None, m=None, k=None, p=None, bits=None):
self.m = m
if k > 4 or k < 1:
raise Exception('Must specify value of k between 1 and 4')
self.k = k
if bits:
self.bits = bits
else:
self.bits = BitVector(size=m)
self.rand = Random()
self.hashes = []
self.hashes.append(RSHash)
self.hashes.append(JSHash)
self.hashes.append(PJWHash)
self.hashes.append(DJBHash)
# switch between hashing techniques
self._indexes = self._rand_indexes
#self._indexes = self._hash_indexes
def __contains__(self, key):
for i in self._indexes(key):
if not self.bits[i]:
return False
return True
def add(self, key):
dupe = True
bits = []
for i in self._indexes(key):
if dupe and not self.bits[i]:
dupe = False
self.bits[i] = 1
bits.append(i)
return dupe
def __and__(self, filter):
if (self.k != filter.k) or (self.m != filter.m):
raise Exception('Must use bloom filters created with equal k/m paramters for bitwise AND')
return BloomFilter(m=self.m,k=self.k,bits=(self.bits & filter.bits))
def __or__(self, filter):
if (self.k != filter.k) or (self.m != filter.m):
raise Exception('Must use bloom filters created with equal k/m paramters for bitwise OR')
return BloomFilter(m=self.m,k=self.k,bits=(self.bits | filter.bits))
def _hash_indexes(self,key):
ret = []
for i in range(self.k):
ret.append(self.hashes[i](key) % self.m)
return ret
def _rand_indexes(self,key):
self.rand.seed(hash(key))
ret = []
for i in range(self.k):
ret.append(self.rand.randint(0,self.m-1))
return ret
if __name__ == '__main__':
e = BloomFilter(m=100, k=4)
e.add('one')
e.add('two')
e.add('three')
e.add('four')
e.add('five')
f = BloomFilter(m=100, k=4)
f.add('three')
f.add('four')
f.add('five')
f.add('six')
f.add('seven')
f.add('eight')
f.add('nine')
f.add("ten")
# test check for dupe on add
assert not f.add('eleven')
assert f.add('eleven')
# test membership operations
assert 'ten' in f
assert 'one' in e
assert 'ten' not in e
assert 'one' not in f
# test set based operations
union = f | e
intersection = f & e
assert 'ten' in union
assert 'one' in union
assert 'three' in intersection
assert 'ten' not in intersection
assert 'one' not in intersection
Además, en mi caso he encontrado que es útil tener una función count_bits más rápido para BitVector. Suelta este código en BitVector 1.5 y se le debe dar un método de conteo de bits con más prestaciones:
def fast_count_bits(self, v):
bits = (
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8)
return bits[v & 0xff] + bits[(v >> 8) & 0xff] + bits[(v >> 16) & 0xff] + bits[v >> 24]
Fuera de interés, ¿puede explicar qué pasa con las implementaciones existentes (especialmente PyBloom)? Puede ser "largo en el diente", pero si funciona y no necesita fijación, eso suena como un plus. – Oddthinking
Oddthinking, actualizado con alguna explicación. – Parand