2011-10-23 22 views
9

Estoy leyendo un libro de Cohen, Cohen, Aiken y West (2003) "Análisis de correlación de regresión múltiple aplicado para las ciencias del comportamiento" y he encontrado una trama en 3D de una superficie de regresión que muestra interacción y no interacción (p.259). Los gráficos parecen haber sido creados usando R. Me gustan los gráficos como herramienta de enseñanza y me gustaría reproducirlos. Las trazas se parecen a esto: enter image description hereParcela Regresión Superficie

La única adición a la Coehn et al. las parcelas fueron líneas a través de los planos en la media, + 1sd, y = 1sd para x2. Esta sería una excelente adición si es posible (generalmente la mayoría de cosas son posibles con R)

He proporcionado un conjunto de datos de muestra a continuación con un IV, 2 predictores y predictores centrados. ¿Cómo usaría R para generar el gráfico de la superficie de regresión (plano) que muestra la interacción y un modelo aditivo para los datos centrado y no centrado (supongo que la técnica será la misma pero quiero asegurarme).

total de 4 parcelas: 1. uncentered ninguna interacción 2. interacción uncentered 3. centrado ninguna interacción 4. interacción centrada

DF<-structure(list(y = c(-1.22, -1.73, -2.64, -2.44, -1.11, 2.24, 
3.42, 0.67, 0.59, -0.61, -10.77, 0.93, -8.6, -6.99, -0.12, -2.29, 
-5.16, -3.35, -3.35, -2.51, 2.21, -1.18, -5.21, -7.74, -1.34), 
    x1 = c(39.5, 41, 34, 30.5, 31.5, 30, 41.5, 24, 43, 39, 25.5, 
    38.5, 33.5, 30, 41, 31, 25, 37, 37.5, 24.5, 38, 37, 41, 37, 
    36), x2 = c(61L, 53L, 53L, 44L, 49L, 44L, 57L, 47L, 54L, 
    48L, 46L, 59L, 46L, 61L, 55L, 57L, 59L, 59L, 55L, 50L, 62L, 
    55L, 55L, 52L, 55L), centered.x1 = c(5.49702380952381, 6.99702380952381, 
    -0.0029761904761898, -3.50297619047619, -2.50297619047619, 
    -4.00297619047619, 7.49702380952381, -10.0029761904762, 8.99702380952381, 
    4.99702380952381, -8.50297619047619, 4.49702380952381, -0.50297619047619, 
    -4.00297619047619, 6.99702380952381, -3.00297619047619, -9.00297619047619, 
    2.99702380952381, 3.49702380952381, -9.50297619047619, 3.99702380952381, 
    2.99702380952381, 6.99702380952381, 2.99702380952381, 1.99702380952381 
    ), centered.x2 = c(9.80357142857143, 1.80357142857143, 1.80357142857143, 
    -7.19642857142857, -2.19642857142857, -7.19642857142857, 
    5.80357142857143, -4.19642857142857, 2.80357142857143, -3.19642857142857, 
    -5.19642857142857, 7.80357142857143, -5.19642857142857, 9.80357142857143, 
    3.80357142857143, 5.80357142857143, 7.80357142857143, 7.80357142857143, 
    3.80357142857143, -1.19642857142857, 10.8035714285714, 3.80357142857143, 
    3.80357142857143, 0.803571428571431, 3.80357142857143)), .Names = c("y", 
"x1", "x2", "centered.x1", "centered.x2"), row.names = c(NA, 
25L), class = "data.frame") 

gracias de antemano.

EDITAR: El siguiente código representa el plano, pero no funcionará cuando tenga una interacción (que es lo que realmente me interesa). Además, no sé cómo trazar el alto (+ 1sd), bajo (-1sd) y la media para x2 tampoco.

x11(10,5) 
s3d <- scatterplot3d(DF[,c(2,3,1)], type="n", highlight.3d=TRUE, 
     angle=70, scale.y=1, pch=16, main="scatterplot3d") 

    # Now adding a regression plane to the "scatterplot3d" 
    my.lm <- with(DF, lm(y ~ x1 + x2)) 
s3d$plane3d(my.lm, lty.box = "solid") 

Un intento de trazar un plano de interacción (véase aquí):

s3d <- scatterplot3d(DF[,c(2,3,1)], type="n", highlight.3d=TRUE, 
     angle=70, scale.y=1, pch=16, main="scatterplot3d") 

    my.lm <- with(DF, lm(y ~ x1 + x2 + x1:x2)) 
s3d$plane3d(my.lm, lty.box = "solid") 

arrojó los siguientes errores:

Error in segments(x, z1, x + y.max * yx.f, z2 + yz.f * y.max, lty = ltya, : 
    cannot mix zero-length and non-zero-length coordinates 
+0

Creo que puede haber algo en R Commander que hace algo como esto ... –

Respuesta

13

Así es como yo lo haría (añadiendo un poco de color) con paquetes 'rms' y 'celosía':

require(rms) # also need to have Hmisc installed 
require(lattice) 
ddI <- datadist(DF) 
options(datadist="ddI") 
lininterp <- ols(y ~ x1*x2, data=DF) 
bplot(Predict(lininterp, x1=25:40, x2=45:60), 
     lfun=wireframe, # bplot passes extra arguments to wireframe 
     screen = list(z = -10, x = -50), drape=TRUE) 

enter image description here

Y el modelo no-interacción:

bplot(Predict(lin.no.int, x1=25:40, x2=45:60), lfun=wireframe, col=2:8, drape=TRUE, 
screen = list(z = -10, x = -50), 
main="Estimated regression surface with no interaction") 

enter image description here