estoy ingeniería inversa de cómo Mathematica hace la lista de interpolación:identificar las funciones de interpolación a partir de gráficos de Mathematica (no Hermite)
(* Fortunately, Mathematica WILL interpolate an arbitrary list *)
tab = Table[a[i], {i,1,100}]
f = Interpolation[tab]
(* get the coefficient of each term by setting others to zero *)
Plot[{f[42+x] /. {a[42] -> 0, a[43] ->0, a[44] -> 0, a[41] -> 1}},
{x,0,1}]
Plot[{f[42+x] /. {a[41] -> 0, a[43] ->0, a[44] -> 0, a[42] -> 1}},
{x,0,1}]
Plot[{f[42+x] /. {a[42] -> 0, a[41] ->0, a[44] -> 0, a[43] -> 1}},
{x,0,1}]
Plot[{f[42+x] /. {a[42] -> 0, a[43] ->0, a[41] -> 0, a[44] -> 1}},
{x,0,1}]
(* above is neither Hermite, nor linear, though some look close *)
(* these are available at oneoff.barrycarter.info/STACK/ *)
Table[f[42+x] /. {a[42] -> 0, a[43] ->0, a[44] -> 0, a[41] -> 1},
{x,0,1, 1/100}] >> /home/barrycarter/BCINFO/ONEOFF/STACK/coeff41.txt
Table[f[42+x] /. {a[41] -> 0, a[43] ->0, a[44] -> 0, a[42] -> 1},
{x,0,1, 1/100}] >> /home/barrycarter/BCINFO/ONEOFF/STACK/coeff42.txt
Table[f[42+x] /. {a[41] -> 0, a[42] ->0, a[44] -> 0, a[43] -> 1},
{x,0,1, 1/100}] >> /home/barrycarter/BCINFO/ONEOFF/STACK/coeff43.txt
Table[f[42+x] /. {a[41] -> 0, a[42] ->0, a[43] -> 0, a[44] -> 1},
{x,0,1, 1/100}] >> /home/barrycarter/BCINFO/ONEOFF/STACK/coeff44.txt
EDIT: Gracias, whuber! Eso hizo exactamente lo que yo quería. Para referencia, los coeficientes son (en orden):
(x-2)*(x-1)*x/-6
(x-2)*(x-1)*(x+1)/2
x*(x+1)*(x-2)/-2
(x-1)*x*(x+1)/6
Para facilitar la lectura, ayudaría a eliminar todas las tramas excepto una, o a hacerlas mucho más pequeñas. –