lo resuelvo con qt para cualquier ruta svg incluyendo curva de bezier, encontré en el módulo svg una función estática en qsvghandler.cpp que parsePathDataFast de su ruta svg a QPainterPath y la guinda del pastel !! QPainterPath tiene tres funciones nativas para convertir tu ruta en un polígono (el más grande en FillPolygon y los otros que se dividen en una lista de polígonos para los PolígonosSubpath o paraFillPolygons) junto con elementos interesantes como cuadro delimitador, intersección, traducción ... listo para usar con Boost: : Geometría ahora, ¡no tan mal!
la cabecera parsepathdatafast.h
#ifndef PARSEPATHDATAFAST_H
#define PARSEPATHDATAFAST_H
#include <QPainterPath>
#include <QString>
bool parsePathDataFast(const QStringRef &dataStr, QPainterPath &path);
#endif // PARSEPATHDATAFAST_H
la parsepathdatafast código.CPP
#include <QtCore/qmath.h>
#include <QtMath>
#include <QChar>
#include <QByteArray>
#include <QMatrix>
#include <parsepathdatafast.h>
Q_CORE_EXPORT double qstrtod(const char *s00, char const **se, bool *ok);
// '0' is 0x30 and '9' is 0x39
static inline bool isDigit(ushort ch)
{
static quint16 magic = 0x3ff;
return ((ch >> 4) == 3) && (magic >> (ch & 15));
}
static qreal toDouble(const QChar *&str)
{
const int maxLen = 255;//technically doubles can go til 308+ but whatever
char temp[maxLen+1];
int pos = 0;
if (*str == QLatin1Char('-')) {
temp[pos++] = '-';
++str;
} else if (*str == QLatin1Char('+')) {
++str;
}
while (isDigit(str->unicode()) && pos < maxLen) {
temp[pos++] = str->toLatin1();
++str;
}
if (*str == QLatin1Char('.') && pos < maxLen) {
temp[pos++] = '.';
++str;
}
while (isDigit(str->unicode()) && pos < maxLen) {
temp[pos++] = str->toLatin1();
++str;
}
bool exponent = false;
if ((*str == QLatin1Char('e') || *str == QLatin1Char('E')) && pos < maxLen) {
exponent = true;
temp[pos++] = 'e';
++str;
if ((*str == QLatin1Char('-') || *str == QLatin1Char('+')) && pos < maxLen) {
temp[pos++] = str->toLatin1();
++str;
}
while (isDigit(str->unicode()) && pos < maxLen) {
temp[pos++] = str->toLatin1();
++str;
}
}
temp[pos] = '\0';
qreal val;
if (!exponent && pos < 10) {
int ival = 0;
const char *t = temp;
bool neg = false;
if(*t == '-') {
neg = true;
++t;
}
while(*t && *t != '.') {
ival *= 10;
ival += (*t) - '0';
++t;
}
if(*t == '.') {
++t;
int div = 1;
while(*t) {
ival *= 10;
ival += (*t) - '0';
div *= 10;
++t;
}
val = ((qreal)ival)/((qreal)div);
} else {
val = ival;
}
if (neg)
val = -val;
} else {
bool ok = false;
val = qstrtod(temp, 0, &ok);
}
return val;
}
static inline void parseNumbersArray(const QChar *&str, QVarLengthArray<qreal, 8> &points)
{
while (str->isSpace())
++str;
while (isDigit(str->unicode()) ||
*str == QLatin1Char('-') || *str == QLatin1Char('+') ||
*str == QLatin1Char('.')) {
points.append(toDouble(str));
while (str->isSpace())
++str;
if (*str == QLatin1Char(','))
++str;
//eat the rest of space
while (str->isSpace())
++str;
}
}
/**
static QVector<qreal> parsePercentageList(const QChar *&str)
{
QVector<qreal> points;
if (!str)
return points;
while (str->isSpace())
++str;
while ((*str >= QLatin1Char('0') && *str <= QLatin1Char('9')) ||
*str == QLatin1Char('-') || *str == QLatin1Char('+') ||
*str == QLatin1Char('.')) {
points.append(toDouble(str));
while (str->isSpace())
++str;
if (*str == QLatin1Char('%'))
++str;
while (str->isSpace())
++str;
if (*str == QLatin1Char(','))
++str;
//eat the rest of space
while (str->isSpace())
++str;
}
return points;
}
**/
static void pathArcSegment(QPainterPath &path,
qreal xc, qreal yc,
qreal th0, qreal th1,
qreal rx, qreal ry, qreal xAxisRotation)
{
qreal sinTh, cosTh;
qreal a00, a01, a10, a11;
qreal x1, y1, x2, y2, x3, y3;
qreal t;
qreal thHalf;
sinTh = qSin(xAxisRotation * (M_PI/180.0));
cosTh = qCos(xAxisRotation * (M_PI/180.0));
a00 = cosTh * rx;
a01 = -sinTh * ry;
a10 = sinTh * rx;
a11 = cosTh * ry;
thHalf = 0.5 * (th1 - th0);
t = (8.0/3.0) * qSin(thHalf * 0.5) * qSin(thHalf * 0.5)/qSin(thHalf);
x1 = xc + qCos(th0) - t * qSin(th0);
y1 = yc + qSin(th0) + t * qCos(th0);
x3 = xc + qCos(th1);
y3 = yc + qSin(th1);
x2 = x3 + t * qSin(th1);
y2 = y3 - t * qCos(th1);
path.cubicTo(a00 * x1 + a01 * y1, a10 * x1 + a11 * y1,
a00 * x2 + a01 * y2, a10 * x2 + a11 * y2,
a00 * x3 + a01 * y3, a10 * x3 + a11 * y3);
}
// the arc handling code underneath is from XSVG (BSD license)
/*
* Copyright 2002 USC/Information Sciences Institute
*
* Permission to use, copy, modify, distribute, and sell this software
* and its documentation for any purpose is hereby granted without
* fee, provided that the above copyright notice appear in all copies
* and that both that copyright notice and this permission notice
* appear in supporting documentation, and that the name of
* Information Sciences Institute not be used in advertising or
* publicity pertaining to distribution of the software without
* specific, written prior permission. Information Sciences Institute
* makes no representations about the suitability of this software for
* any purpose. It is provided "as is" without express or implied
* warranty.
*
* INFORMATION SCIENCES INSTITUTE DISCLAIMS ALL WARRANTIES WITH REGARD
* TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL INFORMATION SCIENCES
* INSTITUTE BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA
* OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*
*/
static void pathArc(QPainterPath &path,
qreal rx,
qreal ry,
qreal x_axis_rotation,
int large_arc_flag,
int sweep_flag,
qreal x,
qreal y,
qreal curx, qreal cury)
{
qreal sin_th, cos_th;
qreal a00, a01, a10, a11;
qreal x0, y0, x1, y1, xc, yc;
qreal d, sfactor, sfactor_sq;
qreal th0, th1, th_arc;
int i, n_segs;
qreal dx, dy, dx1, dy1, Pr1, Pr2, Px, Py, check;
rx = qAbs(rx);
ry = qAbs(ry);
sin_th = qSin(x_axis_rotation * (M_PI/180.0));
cos_th = qCos(x_axis_rotation * (M_PI/180.0));
dx = (curx - x)/2.0;
dy = (cury - y)/2.0;
dx1 = cos_th * dx + sin_th * dy;
dy1 = -sin_th * dx + cos_th * dy;
Pr1 = rx * rx;
Pr2 = ry * ry;
Px = dx1 * dx1;
Py = dy1 * dy1;
/* Spec : check if radii are large enough */
check = Px/Pr1 + Py/Pr2;
if (check > 1) {
rx = rx * qSqrt(check);
ry = ry * qSqrt(check);
}
a00 = cos_th/rx;
a01 = sin_th/rx;
a10 = -sin_th/ry;
a11 = cos_th/ry;
x0 = a00 * curx + a01 * cury;
y0 = a10 * curx + a11 * cury;
x1 = a00 * x + a01 * y;
y1 = a10 * x + a11 * y;
/* (x0, y0) is current point in transformed coordinate space.
(x1, y1) is new point in transformed coordinate space.
The arc fits a unit-radius circle in this space.
*/
d = (x1 - x0) * (x1 - x0) + (y1 - y0) * (y1 - y0);
sfactor_sq = 1.0/d - 0.25;
if (sfactor_sq < 0) sfactor_sq = 0;
sfactor = qSqrt(sfactor_sq);
if (sweep_flag == large_arc_flag) sfactor = -sfactor;
xc = 0.5 * (x0 + x1) - sfactor * (y1 - y0);
yc = 0.5 * (y0 + y1) + sfactor * (x1 - x0);
/* (xc, yc) is center of the circle. */
th0 = qAtan2(y0 - yc, x0 - xc);
th1 = qAtan2(y1 - yc, x1 - xc);
th_arc = th1 - th0;
if (th_arc < 0 && sweep_flag)
th_arc += 2 * M_PI;
else if (th_arc > 0 && !sweep_flag)
th_arc -= 2 * M_PI;
n_segs = qCeil(qAbs(th_arc/(M_PI * 0.5 + 0.001)));
for (i = 0; i < n_segs; i++) {
pathArcSegment(path, xc, yc,
th0 + i * th_arc/n_segs,
th0 + (i + 1) * th_arc/n_segs,
rx, ry, x_axis_rotation);
}
}
bool parsePathDataFast(const QStringRef &dataStr, QPainterPath &path)
{
qreal x0 = 0, y0 = 0; // starting point
qreal x = 0, y = 0; // current point
char lastMode = 0;
QPointF ctrlPt;
const QChar *str = dataStr.constData();
const QChar *end = str + dataStr.size();
while (str != end) {
while (str->isSpace())
++str;
QChar pathElem = *str;
++str;
QChar endc = *end;
*const_cast<QChar *>(end) = 0; // parseNumbersArray requires 0-termination that QStringRef cannot guarantee
QVarLengthArray<qreal, 8> arg;
parseNumbersArray(str, arg);
*const_cast<QChar *>(end) = endc;
if (pathElem == QLatin1Char('z') || pathElem == QLatin1Char('Z'))
arg.append(0);//dummy
const qreal *num = arg.constData();
int count = arg.count();
while (count > 0) {
qreal offsetX = x; // correction offsets
qreal offsetY = y; // for relative commands
switch (pathElem.unicode()) {
case 'm': {
if (count < 2) {
num++;
count--;
break;
}
x = x0 = num[0] + offsetX;
y = y0 = num[1] + offsetY;
num += 2;
count -= 2;
path.moveTo(x0, y0);
// As per 1.2 spec 8.3.2 The "moveto" commands
// If a 'moveto' is followed by multiple pairs of coordinates without explicit commands,
// the subsequent pairs shall be treated as implicit 'lineto' commands.
pathElem = QLatin1Char('l');
}
break;
case 'M': {
if (count < 2) {
num++;
count--;
break;
}
x = x0 = num[0];
y = y0 = num[1];
num += 2;
count -= 2;
path.moveTo(x0, y0);
// As per 1.2 spec 8.3.2 The "moveto" commands
// If a 'moveto' is followed by multiple pairs of coordinates without explicit commands,
// the subsequent pairs shall be treated as implicit 'lineto' commands.
pathElem = QLatin1Char('L');
}
break;
case 'z':
case 'Z': {
x = x0;
y = y0;
count--; // skip dummy
num++;
path.closeSubpath();
}
break;
case 'l': {
if (count < 2) {
num++;
count--;
break;
}
x = num[0] + offsetX;
y = num[1] + offsetY;
num += 2;
count -= 2;
path.lineTo(x, y);
}
break;
case 'L': {
if (count < 2) {
num++;
count--;
break;
}
x = num[0];
y = num[1];
num += 2;
count -= 2;
path.lineTo(x, y);
}
break;
case 'h': {
x = num[0] + offsetX;
num++;
count--;
path.lineTo(x, y);
}
break;
case 'H': {
x = num[0];
num++;
count--;
path.lineTo(x, y);
}
break;
case 'v': {
y = num[0] + offsetY;
num++;
count--;
path.lineTo(x, y);
}
break;
case 'V': {
y = num[0];
num++;
count--;
path.lineTo(x, y);
}
break;
case 'c': {
if (count < 6) {
num += count;
count = 0;
break;
}
QPointF c1(num[0] + offsetX, num[1] + offsetY);
QPointF c2(num[2] + offsetX, num[3] + offsetY);
QPointF e(num[4] + offsetX, num[5] + offsetY);
num += 6;
count -= 6;
path.cubicTo(c1, c2, e);
ctrlPt = c2;
x = e.x();
y = e.y();
break;
}
case 'C': {
if (count < 6) {
num += count;
count = 0;
break;
}
QPointF c1(num[0], num[1]);
QPointF c2(num[2], num[3]);
QPointF e(num[4], num[5]);
num += 6;
count -= 6;
path.cubicTo(c1, c2, e);
ctrlPt = c2;
x = e.x();
y = e.y();
break;
}
case 's': {
if (count < 4) {
num += count;
count = 0;
break;
}
QPointF c1;
if (lastMode == 'c' || lastMode == 'C' ||
lastMode == 's' || lastMode == 'S')
c1 = QPointF(2*x-ctrlPt.x(), 2*y-ctrlPt.y());
else
c1 = QPointF(x, y);
QPointF c2(num[0] + offsetX, num[1] + offsetY);
QPointF e(num[2] + offsetX, num[3] + offsetY);
num += 4;
count -= 4;
path.cubicTo(c1, c2, e);
ctrlPt = c2;
x = e.x();
y = e.y();
break;
}
case 'S': {
if (count < 4) {
num += count;
count = 0;
break;
}
QPointF c1;
if (lastMode == 'c' || lastMode == 'C' ||
lastMode == 's' || lastMode == 'S')
c1 = QPointF(2*x-ctrlPt.x(), 2*y-ctrlPt.y());
else
c1 = QPointF(x, y);
QPointF c2(num[0], num[1]);
QPointF e(num[2], num[3]);
num += 4;
count -= 4;
path.cubicTo(c1, c2, e);
ctrlPt = c2;
x = e.x();
y = e.y();
break;
}
case 'q': {
if (count < 4) {
num += count;
count = 0;
break;
}
QPointF c(num[0] + offsetX, num[1] + offsetY);
QPointF e(num[2] + offsetX, num[3] + offsetY);
num += 4;
count -= 4;
path.quadTo(c, e);
ctrlPt = c;
x = e.x();
y = e.y();
break;
}
case 'Q': {
if (count < 4) {
num += count;
count = 0;
break;
}
QPointF c(num[0], num[1]);
QPointF e(num[2], num[3]);
num += 4;
count -= 4;
path.quadTo(c, e);
ctrlPt = c;
x = e.x();
y = e.y();
break;
}
case 't': {
if (count < 2) {
num += count;
count = 0;
break;
}
QPointF e(num[0] + offsetX, num[1] + offsetY);
num += 2;
count -= 2;
QPointF c;
if (lastMode == 'q' || lastMode == 'Q' ||
lastMode == 't' || lastMode == 'T')
c = QPointF(2*x-ctrlPt.x(), 2*y-ctrlPt.y());
else
c = QPointF(x, y);
path.quadTo(c, e);
ctrlPt = c;
x = e.x();
y = e.y();
break;
}
case 'T': {
if (count < 2) {
num += count;
count = 0;
break;
}
QPointF e(num[0], num[1]);
num += 2;
count -= 2;
QPointF c;
if (lastMode == 'q' || lastMode == 'Q' ||
lastMode == 't' || lastMode == 'T')
c = QPointF(2*x-ctrlPt.x(), 2*y-ctrlPt.y());
else
c = QPointF(x, y);
path.quadTo(c, e);
ctrlPt = c;
x = e.x();
y = e.y();
break;
}
case 'a': {
if (count < 7) {
num += count;
count = 0;
break;
}
qreal rx = (*num++);
qreal ry = (*num++);
qreal xAxisRotation = (*num++);
qreal largeArcFlag = (*num++);
qreal sweepFlag = (*num++);
qreal ex = (*num++) + offsetX;
qreal ey = (*num++) + offsetY;
count -= 7;
qreal curx = x;
qreal cury = y;
pathArc(path, rx, ry, xAxisRotation, int(largeArcFlag),
int(sweepFlag), ex, ey, curx, cury);
x = ex;
y = ey;
}
break;
case 'A': {
if (count < 7) {
num += count;
count = 0;
break;
}
qreal rx = (*num++);
qreal ry = (*num++);
qreal xAxisRotation = (*num++);
qreal largeArcFlag = (*num++);
qreal sweepFlag = (*num++);
qreal ex = (*num++);
qreal ey = (*num++);
count -= 7;
qreal curx = x;
qreal cury = y;
pathArc(path, rx, ry, xAxisRotation, int(largeArcFlag),
int(sweepFlag), ex, ey, curx, cury);
x = ex;
y = ey;
}
break;
default:
return false;
}
lastMode = pathElem.toLatin1();
}
}
return true;
}
Una pregunta, i no encuentra constante en las cabeceras qt estándar Q_PI y reemplazarlo con M_PI esperanza está bien !!
Supongo que tiene el polígono de control para el Bezier disponible? ¿No sería eso un buen punto de partida? ¿Por qué el ángulo importa aquí? Tengo mucha curiosidad sobre lo que estás tratando de lograr. – batbrat
2 puntos de control están disponibles. De hecho, es otra opción para comenzar en el punto de partida de la curva, pero tengo curiosidad por saber si hay soluciones óptimas documentadas disponibles. Quiero usarlo para generar entradas para un dispositivo de enrutamiento cnc. Esta máquina solo entiende líneas rectas, por lo que una curva bezier debe dividirse en un conjunto de líneas rectas. –
No sabía acerca de la curva de Bezier antes de leer su publicación, pero pensando en dividir una curva en n. líneas me hace me recuerda la teoría de infinito de Cantor. ;) – uday