2010-06-08 12 views

Respuesta

6

Desafortunadamente, el JDK no tiene ninguna clase para números complejos.

Usted puede echar un vistazo a:

http://www.java2s.com/Code/Java/Data-Type/Thisclassrepresentscomplexnumbersanddefinesmethodsforperformingarithmeticoncomplexnumbers.htm

que proporciona una aplicación que puede ser útil.

+0

Veo varias cosas con esta clase que no son ideales: 1. ¿por qué las partes llamadas 'x' y' y' están en un lugar, pero 'real' y' imaginario' en otro? 2.) ¿Por qué 'x' y' y' no son 'finales'? 3.) ¿Por qué la clase no es 'final'? 4.) ¿No debería quizás implementar 'Number'? 5.) muchas operaciones faltan. En resumen, diría que probablemente haya mejores implementaciones. –

5

No, el JDK no tiene uno pero aquí hay una implementación que he escrito.

Here es el proyecto GITHUB.

/** 
* <code>ComplexNumber</code> is a class which implements complex numbers in Java. 
* It includes basic operations that can be performed on complex numbers such as, 
* addition, subtraction, multiplication, conjugate, modulus and squaring. 
* The data type for Complex Numbers. 
* <br /><br /> 
* The features of this library include:<br /> 
* <ul> 
* <li>Arithmetic Operations (addition, subtraction, multiplication, division)</li> 
* <li>Complex Specific Operations - Conjugate, Inverse, Absolute/Magnitude, Argument/Phase</li> 
* <li>Trigonometric Operations - sin, cos, tan, cot, sec, cosec</li> 
* <li>Mathematical Functions - exp</li> 
* <li>Complex Parsing of type x+yi</li> 
* </ul> 
* 
* @author  Abdul Fatir 
* @version  1.1 
* 
*/ 
public class ComplexNumber 
{ 
    /** 
    * Used in <code>format(int)</code> to format the complex number as x+yi 
    */ 
    public static final int XY = 0; 
    /** 
    * Used in <code>format(int)</code> to format the complex number as R.cis(theta), where theta is arg(z) 
    */ 
    public static final int RCIS = 1; 
    /** 
    * The real, Re(z), part of the <code>ComplexNumber</code>. 
    */ 
    private double real; 
    /** 
    * The imaginary, Im(z), part of the <code>ComplexNumber</code>. 
    */ 
    private double imaginary; 
    /** 
    * Constructs a new <code>ComplexNumber</code> object with both real and imaginary parts 0 (z = 0 + 0i). 
    */ 
    public ComplexNumber() 
    { 
     real = 0.0; 
     imaginary = 0.0; 
    } 

    /** 
    * Constructs a new <code>ComplexNumber</code> object. 
    * @param real the real part, Re(z), of the complex number 
    * @param imaginary the imaginary part, Im(z), of the complex number 
    */ 

    public ComplexNumber(double real, double imaginary) 
    { 
     this.real = real; 
     this.imaginary = imaginary; 
    } 

    /** 
    * Adds another <code>ComplexNumber</code> to the current complex number. 
    * @param z the complex number to be added to the current complex number 
    */ 

    public void add(ComplexNumber z) 
    { 
     set(add(this,z)); 
    } 

    /** 
    * Subtracts another <code>ComplexNumber</code> from the current complex number. 
    * @param z the complex number to be subtracted from the current complex number 
    */ 

    public void subtract(ComplexNumber z) 
    { 
     set(subtract(this,z)); 
    } 

    /** 
    * Multiplies another <code>ComplexNumber</code> to the current complex number. 
    * @param z the complex number to be multiplied to the current complex number 
    */ 

    public void multiply(ComplexNumber z) 
    { 
     set(multiply(this,z)); 
    } 
    /** 
    * Divides the current <code>ComplexNumber</code> by another <code>ComplexNumber</code>. 
    * @param z the divisor 
    */ 
    public void divide(ComplexNumber z) 
    { 
     set(divide(this,z)); 
    } 
    /** 
    * Sets the value of current complex number to the passed complex number. 
    * @param z the complex number 
    */ 
    public void set(ComplexNumber z) 
    { 
     this.real = z.real; 
     this.imaginary = z.imaginary; 
    } 
    /** 
    * Adds two <code>ComplexNumber</code>. 
    * @param z1 the first <code>ComplexNumber</code>. 
    * @param z2 the second <code>ComplexNumber</code>. 
    * @return the resultant <code>ComplexNumber</code> (z1 + z2). 
    */ 
    public static ComplexNumber add(ComplexNumber z1, ComplexNumber z2) 
    { 
     return new ComplexNumber(z1.real + z2.real, z1.imaginary + z2.imaginary); 
    } 

    /** 
    * Subtracts one <code>ComplexNumber</code> from another. 
    * @param z1 the first <code>ComplexNumber</code>. 
    * @param z2 the second <code>ComplexNumber</code>. 
    * @return the resultant <code>ComplexNumber</code> (z1 - z2). 
    */ 
    public static ComplexNumber subtract(ComplexNumber z1, ComplexNumber z2) 
    { 
     return new ComplexNumber(z1.real - z2.real, z1.imaginary - z2.imaginary); 
    } 
    /** 
    * Multiplies one <code>ComplexNumber</code> to another. 
    * @param z1 the first <code>ComplexNumber</code>. 
    * @param z2 the second <code>ComplexNumber</code>. 
    * @return the resultant <code>ComplexNumber</code> (z1 * z2). 
    */ 
    public static ComplexNumber multiply(ComplexNumber z1, ComplexNumber z2) 
    { 
     double _real = z1.real*z2.real - z1.imaginary*z2.imaginary; 
     double _imaginary = z1.real*z2.imaginary + z1.imaginary*z2.real; 
     return new ComplexNumber(_real,_imaginary); 
    } 
    /** 
    * Divides one <code>ComplexNumber</code> by another. 
    * @param z1 the first <code>ComplexNumber</code>. 
    * @param z2 the second <code>ComplexNumber</code>. 
    * @return the resultant <code>ComplexNumber</code> (z1/z2). 
    */  
    public static ComplexNumber divide(ComplexNumber z1, ComplexNumber z2) 
    { 
     ComplexNumber output = multiply(z1,z2.conjugate()); 
     double div = Math.pow(z2.mod(),2); 
     return new ComplexNumber(output.real/div,output.imaginary/div); 
    } 

    /** 
    * The complex conjugate of the current complex number. 
    * @return a <code>ComplexNumber</code> object which is the conjugate of the current complex number 
    */ 

    public ComplexNumber conjugate() 
    { 
     return new ComplexNumber(this.real,-this.imaginary); 
    } 

    /** 
    * The modulus, magnitude or the absolute value of current complex number. 
    * @return the magnitude or modulus of current complex number 
    */ 

    public double mod() 
    { 
     return Math.sqrt(Math.pow(this.real,2) + Math.pow(this.imaginary,2)); 
    } 

    /** 
    * The square of the current complex number. 
    * @return a <code>ComplexNumber</code> which is the square of the current complex number. 
    */ 

    public ComplexNumber square() 
    { 
     double _real = this.real*this.real - this.imaginary*this.imaginary; 
     double _imaginary = 2*this.real*this.imaginary; 
     return new ComplexNumber(_real,_imaginary); 
    } 
    /** 
    * @return the complex number in x + yi format 
    */ 
    @Override 
    public String toString() 
    { 
     String re = this.real+""; 
     String im = ""; 
     if(this.imaginary < 0) 
      im = this.imaginary+"i"; 
     else 
      im = "+"+this.imaginary+"i"; 
     return re+im; 
    } 
    /** 
    * Calculates the exponential of the <code>ComplexNumber</code> 
    * @param z The input complex number 
    * @return a <code>ComplexNumber</code> which is e^(input z) 
    */ 
    public static ComplexNumber exp(ComplexNumber z) 
    { 
     double a = z.real; 
     double b = z.imaginary; 
     double r = Math.exp(a); 
     a = r*Math.cos(b); 
     b = r*Math.sin(b); 
     return new ComplexNumber(a,b); 
    } 
    /** 
    * Calculates the <code>ComplexNumber</code> to the passed integer power. 
    * @param z The input complex number 
    * @param power The power. 
    * @return a <code>ComplexNumber</code> which is (z)^power 
    */ 
    public static ComplexNumber pow(ComplexNumber z, int power) 
    { 
     ComplexNumber output = new ComplexNumber(z.getRe(),z.getIm()); 
     for(int i = 1; i < power; i++) 
     { 
      double _real = output.real*z.real - output.imaginary*z.imaginary; 
      double _imaginary = output.real*z.imaginary + output.imaginary*z.real; 
      output = new ComplexNumber(_real,_imaginary); 
     } 
     return output; 
    } 
    /** 
    * Calculates the sine of the <code>ComplexNumber</code> 
    * @param z the input complex number 
    * @return a <code>ComplexNumber</code> which is the sine of z. 
    */ 
    public static ComplexNumber sin(ComplexNumber z) 
    { 
     double x = Math.exp(z.imaginary); 
     double x_inv = 1/x; 
     double r = Math.sin(z.real) * (x + x_inv)/2; 
     double i = Math.cos(z.real) * (x - x_inv)/2; 
     return new ComplexNumber(r,i); 
    } 
    /** 
    * Calculates the cosine of the <code>ComplexNumber</code> 
    * @param z the input complex number 
    * @return a <code>ComplexNumber</code> which is the cosine of z. 
    */ 
    public static ComplexNumber cos(ComplexNumber z) 
    { 
     double x = Math.exp(z.imaginary); 
     double x_inv = 1/x; 
     double r = Math.cos(z.real) * (x + x_inv)/2; 
     double i = -Math.sin(z.real) * (x - x_inv)/2; 
     return new ComplexNumber(r,i); 
    } 
    /** 
    * Calculates the tangent of the <code>ComplexNumber</code> 
    * @param z the input complex number 
    * @return a <code>ComplexNumber</code> which is the tangent of z. 
    */ 
    public static ComplexNumber tan(ComplexNumber z) 
    { 
     return divide(sin(z),cos(z)); 
    } 
    /** 
    * Calculates the co-tangent of the <code>ComplexNumber</code> 
    * @param z the input complex number 
    * @return a <code>ComplexNumber</code> which is the co-tangent of z. 
    */ 
    public static ComplexNumber cot(ComplexNumber z) 
    { 
     return divide(new ComplexNumber(1,0),tan(z)); 
    } 
    /** 
    * Calculates the secant of the <code>ComplexNumber</code> 
    * @param z the input complex number 
    * @return a <code>ComplexNumber</code> which is the secant of z. 
    */ 
    public static ComplexNumber sec(ComplexNumber z) 
    { 
     return divide(new ComplexNumber(1,0),cos(z)); 
    } 
    /** 
    * Calculates the co-secant of the <code>ComplexNumber</code> 
    * @param z the input complex number 
    * @return a <code>ComplexNumber</code> which is the co-secant of z. 
    */ 
    public static ComplexNumber cosec(ComplexNumber z) 
    { 
     return divide(new ComplexNumber(1,0),sin(z)); 
    } 
    /** 
    * The real part of <code>ComplexNumber</code> 
    * @return the real part of the complex number 
    */ 
    public double getRe() 
    { 
     return this.real; 
    } 
    /** 
    * The imaginary part of <code>ComplexNumber</code> 
    * @return the imaginary part of the complex number 
    */ 
    public double getIm() 
    { 
     return this.imaginary; 
    } 
    /** 
    * The argument/phase of the current complex number. 
    * @return arg(z) - the argument of current complex number 
    */ 
    public double getArg() 
    { 
     return Math.atan2(imaginary,real); 
    } 
    /** 
    * Parses the <code>String</code> as a <code>ComplexNumber</code> of type x+yi. 
    * @param s the input complex number as string 
    * @return a <code>ComplexNumber</code> which is represented by the string. 
    */ 
    public static ComplexNumber parseComplex(String s) 
    { 
     s = s.replaceAll(" ",""); 
     ComplexNumber parsed = null; 
     if(s.contains(String.valueOf("+")) || (s.contains(String.valueOf("-")) && s.lastIndexOf('-') > 0)) 
     { 
      String re = ""; 
      String im = ""; 
      s = s.replaceAll("i",""); 
      s = s.replaceAll("I",""); 
      if(s.indexOf('+') > 0) 
      { 
       re = s.substring(0,s.indexOf('+')); 
       im = s.substring(s.indexOf('+')+1,s.length()); 
       parsed = new ComplexNumber(Double.parseDouble(re),Double.parseDouble(im)); 
      } 
      else if(s.lastIndexOf('-') > 0) 
      { 
       re = s.substring(0,s.lastIndexOf('-')); 
       im = s.substring(s.lastIndexOf('-')+1,s.length()); 
       parsed = new ComplexNumber(Double.parseDouble(re),-Double.parseDouble(im)); 
      } 
     } 
     else 
     { 
      // Pure imaginary number 
      if(s.endsWith("i") || s.endsWith("I")) 
      { 
       s = s.replaceAll("i",""); 
       s = s.replaceAll("I",""); 
       parsed = new ComplexNumber(0, Double.parseDouble(s)); 
      } 
      // Pure real number 
      else 
      { 
       parsed = new ComplexNumber(Double.parseDouble(s),0); 
      } 
     } 
     return parsed; 
    } 
    /** 
    * Checks if the passed <code>ComplexNumber</code> is equal to the current. 
    * @param z the complex number to be checked 
    * @return true if they are equal, false otherwise 
    */ 
    @Override 
    public final boolean equals(Object z) 
    { 
     if (!(z instanceof ComplexNumber)) 
      return false; 
     ComplexNumber a = (ComplexNumber) z; 
     return (real == a.real) && (imaginary == a.imaginary); 
    } 
    /** 
    * The inverse/reciprocal of the complex number. 
    * @return the reciprocal of current complex number. 
    */ 
    public ComplexNumber inverse() 
    { 
     return divide(new ComplexNumber(1,0),this); 
    } 
    /** 
    * Formats the Complex number as x+yi or r.cis(theta) 
    * @param format_id the format ID <code>ComplexNumber.XY</code> or <code>ComplexNumber.RCIS</code>. 
    * @return a string representation of the complex number 
    * @throws IllegalArgumentException if the format_id does not match. 
    */ 
    public String format(int format_id) throws IllegalArgumentException 
    { 
     String out = ""; 
     if(format_id == XY) 
      out = toString(); 
     else if(format_id == RCIS) 
     { 
      out = mod()+" cis("+getArg()+")"; 
     } 
     else 
     { 
      throw new IllegalArgumentException("Unknown Complex Number format."); 
     } 
     return out; 
    } 
} 
Cuestiones relacionadas