2011-10-31 27 views
8

Estoy tratando de aprender sobre el algoritmo de Baum-Welch (para ser utilizado con un modelo de markov oculto). Entiendo la teoría básica de los modelos de avance-retroceso, pero sería bueno que alguien me ayude a explicarlo con algún código (me resulta más fácil leer el código porque puedo jugar para entenderlo). Revisé github y bitbucket y no encontré nada que fuera fácilmente comprensible.Ejemplo de implementación de Baum-Welch

Hay muchos tutoriales de HMM en la red, pero las probabilidades ya se proporcionan o, en el caso de los correctores ortográficos, agregan apariciones de palabras para hacer los modelos. Sería genial si alguien tuviera ejemplos de crear un modelo de Baum-Welch con solo las observaciones. Por ejemplo, en http://en.wikipedia.org/wiki/Hidden_Markov_model#A_concrete_example si sólo tenía:

states = ('Rainy', 'Sunny') 

observations = ('walk', 'shop', 'clean') 

Esto es sólo un ejemplo, creo que cualquier ejemplo que lo explica y podemos jugar con el bien para comprender mejor es grande. Tengo un problema específico que intento resolver, pero estaba pensando que tal vez sería más valioso mostrar un código del que las personas puedan aprender y aplicar sus propios problemas (si no es aceptable, puedo publicar mi propio problema). Si es posible, sería bueno tenerlo en python (o java).

¡Gracias de antemano!

Respuesta

11

Aquí hay un código que escribí hace varios años para una clase, basado en la presentación en Jurafsky/Martin (2da edición, capítulo 6, si tiene acceso al libro). Realmente no es un código muy bueno, no usa numpy, lo cual es absolutamente necesario, y hace un poco de mierda para que las matrices sean indexadas en 1 en lugar de simplemente ajustar las fórmulas para ser indexadas en 0, pero, bueno, tal vez sea ayuda. Baum-Welch se conoce como "avanzar hacia atrás" en el código.

Los datos de ejemplo/prueba se basan en Jason Eisner's spreadsheet que implementa algunos algoritmos relacionados con HMM. Tenga en cuenta que la versión implementada del modelo usa un estado absorbente END al cual otros estados tienen probabilidades de transición, en lugar de asumir una longitud de secuencia fija preexistente.

(. También disponible as a gist si lo prefiere)

hmm.py, la mitad de los cuales es código de prueba en base a los siguientes archivos:

#!/usr/bin/env python 
""" 
CS 65 Lab #3 -- 5 Oct 2008 
Dougal Sutherland 

Implements a hidden Markov model, based on Jurafsky + Martin's presentation, 
which is in turn based off work by Jason Eisner. We test our program with 
data from Eisner's spreadsheets. 
""" 


identity = lambda x: x 

class HiddenMarkovModel(object): 
    """A hidden Markov model.""" 

    def __init__(self, states, transitions, emissions, vocab): 
     """ 
     states - a list/tuple of states, e.g. ('start', 'hot', 'cold', 'end') 
       start state needs to be first, end state last 
       states are numbered by their order here 
     transitions - the probabilities to go from one state to another 
         transitions[from_state][to_state] = prob 
     emissions - the probabilities of an observation for a given state 
        emissions[state][observation] = prob 
     vocab: a list/tuple of the names of observable values, in order 
     """ 
     self.states = states 
     self.real_states = states[1:-1] 
     self.start_state = 0 
     self.end_state = len(states) - 1 
     self.transitions = transitions 
     self.emissions = emissions 
     self.vocab = vocab 

    # functions to get stuff one-indexed 
    state_num = lambda self, n: self.states[n] 
    state_nums = lambda self: xrange(1, len(self.real_states) + 1) 

    vocab_num = lambda self, n: self.vocab[n - 1] 
    vocab_nums = lambda self: xrange(1, len(self.vocab) + 1) 
    num_for_vocab = lambda self, s: self.vocab.index(s) + 1 

    def transition(self, from_state, to_state): 
     return self.transitions[from_state][to_state] 

    def emission(self, state, observed): 
     return self.emissions[state][observed - 1] 


    # helper stuff 
    def _normalize_observations(self, observations): 
     return [None] + [self.num_for_vocab(o) if o.__class__ == str else o 
               for o in observations] 

    def _init_trellis(self, observed, forward=True, init_func=identity): 
     trellis = [ [None for j in range(len(observed))] 
          for i in range(len(self.real_states) + 1) ] 

     if forward: 
      v = lambda s: self.transition(0, s) * self.emission(s, observed[1]) 
     else: 
      v = lambda s: self.transition(s, self.end_state) 
     init_pos = 1 if forward else -1 

     for state in self.state_nums(): 
      trellis[state][init_pos] = init_func(v(state)) 
     return trellis 

    def _follow_backpointers(self, trellis, start): 
     # don't bother branching 
     pointer = start[0] 
     seq = [pointer, self.end_state] 
     for t in reversed(xrange(1, len(trellis[1]))): 
      val, backs = trellis[pointer][t] 
      pointer = backs[0] 
      seq.insert(0, pointer) 
     return seq 


    # actual algorithms 

    def forward_prob(self, observations, return_trellis=False): 
     """ 
     Returns the probability of seeing the given `observations` sequence, 
     using the Forward algorithm. 
     """ 
     observed = self._normalize_observations(observations) 
     trellis = self._init_trellis(observed) 

     for t in range(2, len(observed)): 
      for state in self.state_nums(): 
       trellis[state][t] = sum(
        self.transition(old_state, state) 
         * self.emission(state, observed[t]) 
         * trellis[old_state][t-1] 
        for old_state in self.state_nums() 
       ) 
     final = sum(trellis[state][-1] * self.transition(state, -1) 
        for state in self.state_nums()) 
     return (final, trellis) if return_trellis else final 


    def backward_prob(self, observations, return_trellis=False): 
     """ 
     Returns the probability of seeing the given `observations` sequence, 
     using the Backward algorithm. 
     """ 
     observed = self._normalize_observations(observations) 
     trellis = self._init_trellis(observed, forward=False) 

     for t in reversed(range(1, len(observed) - 1)): 
      for state in self.state_nums(): 
       trellis[state][t] = sum(
        self.transition(state, next_state) 
         * self.emission(next_state, observed[t+1]) 
         * trellis[next_state][t+1] 
        for next_state in self.state_nums() 
       ) 
     final = sum(self.transition(0, state) 
         * self.emission(state, observed[1]) 
         * trellis[state][1] 
        for state in self.state_nums()) 
     return (final, trellis) if return_trellis else final 


    def viterbi_sequence(self, observations, return_trellis=False): 
     """ 
     Returns the most likely sequence of hidden states, for a given 
     sequence of observations. Uses the Viterbi algorithm. 
     """ 
     observed = self._normalize_observations(observations) 
     trellis = self._init_trellis(observed, init_func=lambda val: (val, [0])) 

     for t in range(2, len(observed)): 
      for state in self.state_nums(): 
       emission_prob = self.emission(state, observed[t]) 
       last = [(old_state, trellis[old_state][t-1][0] * \ 
            self.transition(old_state, state) * \ 
            emission_prob) 
         for old_state in self.state_nums()] 
       highest = max(last, key=lambda p: p[1])[1] 
       backs = [s for s, val in last if val == highest] 
       trellis[state][t] = (highest, backs) 

     last = [(old_state, trellis[old_state][-1][0] * \ 
          self.transition(old_state, self.end_state)) 
       for old_state in self.state_nums()] 
     highest = max(last, key = lambda p: p[1])[1] 
     backs = [s for s, val in last if val == highest] 
     seq = self._follow_backpointers(trellis, backs) 

     return (seq, trellis) if return_trellis else seq 


    def train_on_obs(self, observations, return_probs=False): 
     """ 
     Trains the model once, using the forward-backward algorithm. This 
     function returns a new HMM instance rather than modifying this one. 
     """ 
     observed = self._normalize_observations(observations) 
     forward_prob, forwards = self.forward_prob(observations, True) 
     backward_prob, backwards = self.backward_prob(observations, True) 

     # gamma values 
     prob_of_state_at_time = posat = [None] + [ 
      [0] + [forwards[state][t] * backwards[state][t]/forward_prob 
       for t in range(1, len(observations)+1)] 
      for state in self.state_nums()] 
     # xi values 
     prob_of_transition = pot = [None] + [ 
      [None] + [ 
       [0] + [forwards[state1][t] 
         * self.transition(state1, state2) 
         * self.emission(state2, observed[t+1]) 
         * backwards[state2][t+1] 
         /forward_prob 
        for t in range(1, len(observations))] 
       for state2 in self.state_nums()] 
      for state1 in self.state_nums()] 

     # new transition probabilities 
     trans = [[0 for j in range(len(self.states))] 
        for i in range(len(self.states))] 
     trans[self.end_state][self.end_state] = 1 

     for state in self.state_nums(): 
      state_prob = sum(posat[state]) 
      trans[0][state] = posat[state][1] 
      trans[state][-1] = posat[state][-1]/state_prob 
      for oth in self.state_nums(): 
       trans[state][oth] = sum(pot[state][oth])/state_prob 

     # new emission probabilities 
     emit = [[0 for j in range(len(self.vocab))] 
        for i in range(len(self.states))] 
     for state in self.state_nums(): 
      for output in range(1, len(self.vocab) + 1): 
       n = sum(posat[state][t] for t in range(1, len(observations)+1) 
               if observed[t] == output) 
       emit[state][output-1] = n/sum(posat[state]) 

     trained = HiddenMarkovModel(self.states, trans, emit, self.vocab) 
     return (trained, posat, pot) if return_probs else trained 


# ====================== 
# = reading from files = 
# ====================== 

def normalize(string): 
    if '#' in string: 
     string = string[:string.index('#')] 
    return string.strip() 

def make_hmm_from_file(f): 
    def nextline(): 
     line = f.readline() 
     if line == '': # EOF 
      return None 
     else: 
      return normalize(line) or nextline() 

    n = int(nextline()) 
    states = [nextline() for i in range(n)] # <3 list comprehension abuse 

    num_vocab = int(nextline()) 
    vocab = [nextline() for i in range(num_vocab)] 

    transitions = [[float(x) for x in nextline().split()] for i in range(n)] 
    emissions = [[float(x) for x in nextline().split()] for i in range(n)] 

    assert nextline() is None 
    return HiddenMarkovModel(states, transitions, emissions, vocab) 

def read_observations_from_file(f): 
    return filter(lambda x: x, [normalize(line) for line in f.readlines()]) 

# ========= 
# = tests = 
# ========= 

import unittest 
class TestHMM(unittest.TestCase): 
    def setUp(self): 
     # it's complicated to pass args to a testcase, so just use globals 
     self.hmm = make_hmm_from_file(file(HMM_FILENAME)) 
     self.obs = read_observations_from_file(file(OBS_FILENAME)) 

    def test_forward(self): 
     prob, trellis = self.hmm.forward_prob(self.obs, True) 
     self.assertAlmostEqual(prob,   9.1276e-19, 21) 
     self.assertAlmostEqual(trellis[1][1], 0.1,  4) 
     self.assertAlmostEqual(trellis[1][3], 0.00135, 5) 
     self.assertAlmostEqual(trellis[1][6], 8.71549e-5, 9) 
     self.assertAlmostEqual(trellis[1][13], 5.70827e-9, 9) 
     self.assertAlmostEqual(trellis[1][20], 1.3157e-10, 14) 
     self.assertAlmostEqual(trellis[1][27], 3.1912e-14, 13) 
     self.assertAlmostEqual(trellis[1][33], 2.0498e-18, 22) 
     self.assertAlmostEqual(trellis[2][1], 0.1,  4) 
     self.assertAlmostEqual(trellis[2][3], 0.03591, 5) 
     self.assertAlmostEqual(trellis[2][6], 5.30337e-4, 8) 
     self.assertAlmostEqual(trellis[2][13], 1.37864e-7, 11) 
     self.assertAlmostEqual(trellis[2][20], 2.7819e-12, 15) 
     self.assertAlmostEqual(trellis[2][27], 4.6599e-15, 18) 
     self.assertAlmostEqual(trellis[2][33], 7.0777e-18, 22) 

    def test_backward(self): 
     prob, trellis = self.hmm.backward_prob(self.obs, True) 
     self.assertAlmostEqual(prob,   9.1276e-19, 21) 
     self.assertAlmostEqual(trellis[1][1], 1.1780e-18, 22) 
     self.assertAlmostEqual(trellis[1][3], 7.2496e-18, 22) 
     self.assertAlmostEqual(trellis[1][6], 3.3422e-16, 20) 
     self.assertAlmostEqual(trellis[1][13], 3.5380e-11, 15) 
     self.assertAlmostEqual(trellis[1][20], 6.77837e-9, 14) 
     self.assertAlmostEqual(trellis[1][27], 1.44877e-5, 10) 
     self.assertAlmostEqual(trellis[1][33], 0.1,  4) 
     self.assertAlmostEqual(trellis[2][1], 7.9496e-18, 22) 
     self.assertAlmostEqual(trellis[2][3], 2.5145e-17, 21) 
     self.assertAlmostEqual(trellis[2][6], 1.6662e-15, 19) 
     self.assertAlmostEqual(trellis[2][13], 5.1558e-12, 16) 
     self.assertAlmostEqual(trellis[2][20], 7.52345e-9, 14) 
     self.assertAlmostEqual(trellis[2][27], 9.66609e-5, 9) 
     self.assertAlmostEqual(trellis[2][33], 0.1,  4) 

    def test_viterbi(self): 
     path, trellis = self.hmm.viterbi_sequence(self.obs, True) 
     self.assertEqual(path, [0] + [2]*13 + [1]*14 + [2]*6 + [3]) 
     self.assertAlmostEqual(trellis[1][1] [0], 0.1,  4) 
     self.assertAlmostEqual(trellis[1][6] [0], 5.62e-05, 7) 
     self.assertAlmostEqual(trellis[1][7] [0], 4.50e-06, 8) 
     self.assertAlmostEqual(trellis[1][16][0], 1.99e-09, 11) 
     self.assertAlmostEqual(trellis[1][17][0], 3.18e-10, 12) 
     self.assertAlmostEqual(trellis[1][23][0], 4.00e-13, 15) 
     self.assertAlmostEqual(trellis[1][25][0], 1.26e-13, 15) 
     self.assertAlmostEqual(trellis[1][29][0], 7.20e-17, 19) 
     self.assertAlmostEqual(trellis[1][30][0], 1.15e-17, 19) 
     self.assertAlmostEqual(trellis[1][32][0], 7.90e-19, 21) 
     self.assertAlmostEqual(trellis[1][33][0], 1.26e-19, 21) 
     self.assertAlmostEqual(trellis[2][ 1][0], 0.1,  4) 
     self.assertAlmostEqual(trellis[2][ 4][0], 0.00502, 5) 
     self.assertAlmostEqual(trellis[2][ 6][0], 0.00045, 5) 
     self.assertAlmostEqual(trellis[2][12][0], 1.62e-07, 9) 
     self.assertAlmostEqual(trellis[2][18][0], 3.18e-12, 14) 
     self.assertAlmostEqual(trellis[2][19][0], 1.78e-12, 14) 
     self.assertAlmostEqual(trellis[2][23][0], 5.00e-14, 16) 
     self.assertAlmostEqual(trellis[2][28][0], 7.87e-16, 18) 
     self.assertAlmostEqual(trellis[2][29][0], 4.41e-16, 18) 
     self.assertAlmostEqual(trellis[2][30][0], 7.06e-17, 19) 
     self.assertAlmostEqual(trellis[2][33][0], 1.01e-18, 20) 

    def test_learning_probs(self): 
     trained, gamma, xi = self.hmm.train_on_obs(self.obs, True) 

     self.assertAlmostEqual(gamma[1][1], 0.129, 3) 
     self.assertAlmostEqual(gamma[1][3], 0.011, 3) 
     self.assertAlmostEqual(gamma[1][7], 0.022, 3) 
     self.assertAlmostEqual(gamma[1][14], 0.887, 3) 
     self.assertAlmostEqual(gamma[1][18], 0.994, 3) 
     self.assertAlmostEqual(gamma[1][23], 0.961, 3) 
     self.assertAlmostEqual(gamma[1][27], 0.507, 3) 
     self.assertAlmostEqual(gamma[1][33], 0.225, 3) 
     self.assertAlmostEqual(gamma[2][1], 0.871, 3) 
     self.assertAlmostEqual(gamma[2][3], 0.989, 3) 
     self.assertAlmostEqual(gamma[2][7], 0.978, 3) 
     self.assertAlmostEqual(gamma[2][14], 0.113, 3) 
     self.assertAlmostEqual(gamma[2][18], 0.006, 3) 
     self.assertAlmostEqual(gamma[2][23], 0.039, 3) 
     self.assertAlmostEqual(gamma[2][27], 0.493, 3) 
     self.assertAlmostEqual(gamma[2][33], 0.775, 3) 

     self.assertAlmostEqual(xi[1][1][1], 0.021, 3) 
     self.assertAlmostEqual(xi[1][1][12], 0.128, 3) 
     self.assertAlmostEqual(xi[1][1][32], 0.13, 3) 
     self.assertAlmostEqual(xi[2][1][1], 0.003, 3) 
     self.assertAlmostEqual(xi[2][1][22], 0.017, 3) 
     self.assertAlmostEqual(xi[2][1][32], 0.095, 3) 
     self.assertAlmostEqual(xi[1][2][4], 0.02, 3) 
     self.assertAlmostEqual(xi[1][2][16], 0.018, 3) 
     self.assertAlmostEqual(xi[1][2][29], 0.010, 3) 
     self.assertAlmostEqual(xi[2][2][2], 0.972, 3) 
     self.assertAlmostEqual(xi[2][2][12], 0.762, 3) 
     self.assertAlmostEqual(xi[2][2][28], 0.907, 3) 

    def test_learning_results(self): 
     trained = self.hmm.train_on_obs(self.obs) 

     tr = trained.transition 
     self.assertAlmostEqual(tr(0, 0), 0,  5) 
     self.assertAlmostEqual(tr(0, 1), 0.1291, 4) 
     self.assertAlmostEqual(tr(0, 2), 0.8709, 4) 
     self.assertAlmostEqual(tr(0, 3), 0,  4) 
     self.assertAlmostEqual(tr(1, 0), 0,  5) 
     self.assertAlmostEqual(tr(1, 1), 0.8757, 4) 
     self.assertAlmostEqual(tr(1, 2), 0.1090, 4) 
     self.assertAlmostEqual(tr(1, 3), 0.0153, 4) 
     self.assertAlmostEqual(tr(2, 0), 0,  5) 
     self.assertAlmostEqual(tr(2, 1), 0.0925, 4) 
     self.assertAlmostEqual(tr(2, 2), 0.8652, 4) 
     self.assertAlmostEqual(tr(2, 3), 0.0423, 4) 
     self.assertAlmostEqual(tr(3, 0), 0,  5) 
     self.assertAlmostEqual(tr(3, 1), 0,  4) 
     self.assertAlmostEqual(tr(3, 2), 0,  4) 
     self.assertAlmostEqual(tr(3, 3), 1,  4) 

     em = trained.emission 
     self.assertAlmostEqual(em(0, 1), 0,  4) 
     self.assertAlmostEqual(em(0, 2), 0,  4) 
     self.assertAlmostEqual(em(0, 3), 0,  4) 
     self.assertAlmostEqual(em(1, 1), 0.6765, 4) 
     self.assertAlmostEqual(em(1, 2), 0.2188, 4) 
     self.assertAlmostEqual(em(1, 3), 0.1047, 4) 
     self.assertAlmostEqual(em(2, 1), 0.0584, 4) 
     self.assertAlmostEqual(em(2, 2), 0.4251, 4) 
     self.assertAlmostEqual(em(2, 3), 0.5165, 4) 
     self.assertAlmostEqual(em(3, 1), 0,  4) 
     self.assertAlmostEqual(em(3, 2), 0,  4) 
     self.assertAlmostEqual(em(3, 3), 0,  4) 

     # train 9 more times 
     for i in range(9): 
      trained = trained.train_on_obs(self.obs) 

     tr = trained.transition 
     self.assertAlmostEqual(tr(0, 0), 0,  4) 
     self.assertAlmostEqual(tr(0, 1), 0,  4) 
     self.assertAlmostEqual(tr(0, 2), 1,  4) 
     self.assertAlmostEqual(tr(0, 3), 0,  4) 
     self.assertAlmostEqual(tr(1, 0), 0,  4) 
     self.assertAlmostEqual(tr(1, 1), 0.9337, 4) 
     self.assertAlmostEqual(tr(1, 2), 0.0663, 4) 
     self.assertAlmostEqual(tr(1, 3), 0,  4) 
     self.assertAlmostEqual(tr(2, 0), 0,  4) 
     self.assertAlmostEqual(tr(2, 1), 0.0718, 4) 
     self.assertAlmostEqual(tr(2, 2), 0.8650, 4) 
     self.assertAlmostEqual(tr(2, 3), 0.0632, 4) 
     self.assertAlmostEqual(tr(3, 0), 0,  4) 
     self.assertAlmostEqual(tr(3, 1), 0,  4) 
     self.assertAlmostEqual(tr(3, 2), 0,  4) 
     self.assertAlmostEqual(tr(3, 3), 1,  4) 

     em = trained.emission 
     self.assertAlmostEqual(em(0, 1), 0,  4) 
     self.assertAlmostEqual(em(0, 2), 0,  4) 
     self.assertAlmostEqual(em(0, 3), 0,  4) 
     self.assertAlmostEqual(em(1, 1), 0.6407, 4) 
     self.assertAlmostEqual(em(1, 2), 0.1481, 4) 
     self.assertAlmostEqual(em(1, 3), 0.2112, 4) 
     self.assertAlmostEqual(em(2, 1), 0.00016,5) 
     self.assertAlmostEqual(em(2, 2), 0.5341, 4) 
     self.assertAlmostEqual(em(2, 3), 0.4657, 4) 
     self.assertAlmostEqual(em(3, 1), 0,  4) 
     self.assertAlmostEqual(em(3, 2), 0,  4) 
     self.assertAlmostEqual(em(3, 3), 0,  4) 

if __name__ == '__main__': 
    import sys 
    HMM_FILENAME = sys.argv[1] if len(sys.argv) >= 2 else 'example.hmm' 
    OBS_FILENAME = sys.argv[2] if len(sys.argv) >= 3 else 'observations.txt' 

    unittest.main() 

observations.txt, una secuencia de observaciones para la prueba:

2 
3 
3 
2 
3 
2 
3 
2 
2 
3 
1 
3 
3 
1 
1 
1 
2 
1 
1 
1 
3 
1 
2 
1 
1 
1 
2 
3 
3 
2 
3 
2 
2 

example.hmm, el modelo utilizado para generar los datos

4 # number of states 
START 
COLD 
HOT 
END 

3 # size of vocab 
1 
2 
3 

# transition matrix 
0.0 0.5 0.5 0.0 # from start 
0.0 0.8 0.1 0.1 # from cold 
0.0 0.1 0.8 0.1 # from hot 
0.0 0.0 0.0 1.0 # from end 

# emission matrix 
0.0 0.0 0.0 # from start 
0.7 0.2 0.1 # from cold 
0.1 0.2 0.7 # from hot 
0.0 0.0 0.0 # from end 
+0

Muchas gracias. Gran respuesta. Tu código está un poco sobre mi cabeza, pero pasaré los próximos días tratando de entenderlo (lo siento, soy un novato en los modelos de Markov). ¡Gracias de nuevo! – Lostsoul

+0

@Dougal, ¿pueden echar un vistazo a mi pregunta aquí http://math.stackexchange.com/q/96629/22327? Gracias. –

Cuestiones relacionadas