Aquí hay una manera de rotar cualquier punto sobre cualquier otro punto en 2D. Tenga en cuenta que en 3D esto se puede utilizar como rotación sobre el eje z, coordenada z de un punto que se está utilizando, ya que no cambia. La rotación sobre el eje xy el eje y en 3D también se puede implementar fácilmente.
El código está en JavaScript. Las líneas comentadas al principio son un conjunto de prueba para la función. También sirven como un ejemplo de uso.
//A = new Array(0,0)
//S = new Array(-1,0)
//fi = 90
//alert("rotujBod: " + rotatePoint(A, S, fi))
function rotatePoint(A, S, fi) {
/** IN points A - rotated point, S - centre, fi - angle of rotation (rad)
* points in format [Ax, Ay, Az], angle fi (float)
* OUT point B
*/
r = Math.sqrt((A[0] - S[0])*(A[0] - S[0]) + (A[1] - S[1])*(A[1] - S[1]))
originOfRotation = new Array(S[0] + r, S[1])
if (A[1] < S[1]) {
A2 = new Array(A[0], -1*A[1])
originalAngle = -1*sizeOfAngle(originOfRotation, S, A2)
} else {
originalAngle = sizeOfAngle(originOfRotation, S, A)
}
x = S[0] + r*Math.cos(fi + originalAngle)
y = S[1] + r*Math.sin(fi + originalAngle)
B = new Array(x, y)
return(B)
}
function sizeOfAngle(A, S, B) {
ux = A[0] - S[0]
uy = A[1] - S[1]
vx = B[0] - S[0]
vy = B[1] - S[1]
if((Math.sqrt(ux*ux + uy*uy)*Math.sqrt(vx*vx + vy*vy)) == 0) {return 0}
return Math.acos((ux*vx + uy*vy)/(Math.sqrt(ux*ux + uy*uy)*Math.sqrt(vx*vx + vy*vy)))
}
Tome un vistazo a esto .. que podría ayudar a despejar las cosas: http://en.wikipedia.org/wiki/Rotation_matrix#In_two_dimensions – Sednus