Tengo problemas con las uniones en pandas y estoy tratando de descubrir qué es lo que está mal. decir que tengo un dataframe
x:pandas join/merge/concat dos dataframes
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 1941 entries, 2004-10-19 00:00:00 to 2012-07-23 00:00:00
Data columns:
close 1941 non-null values
high 1941 non-null values
low 1941 non-null values
open 1941 non-null values
dtypes: float64(4)
debería ser capaz de unirse a ella y con el índice con un simple comando de unirse a donde y = x 2, excepto COLNAMES tienen.
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 1941 entries, 2004-10-19 00:00:00 to 2012-07-23 00:00:00
Data columns:
close2 1941 non-null values
high2 1941 non-null values
low2 1941 non-null values
open2 1941 non-null values
dtypes: float64(4)
y.join(x) or pandas.DataFrame.join(y,x):
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 34879 entries, 2004-12-16 00:00:00 to 2012-07-12 00:00:00
Data columns:
close2 34879 non-null values
high2 34879 non-null values
low2 34879 non-null values
open2 34879 non-null values
close 34879 non-null values
high 34879 non-null values
low 34879 non-null values
open 34879 non-null values
dtypes: float64(8)
Espero que el final tenga 1941 no valores para ambos. Traté de fusionar también, pero tengo el mismo problema.
Pensé que la respuesta correcta era pandas.concat ([x, y]), pero esto tampoco hace lo que tengo pensado.
In [83]: pandas.concat([x,y])
Out[83]: <class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 3882 entries, 2004-10-19 00:00:00 to 2012-07-23 00:00:00
Data columns:
close2 3882 non-null values
high2 3882 non-null values
low2 3882 non-null values
open2 3882 non-null values
dtypes: float64(4)
edición: Si está teniendo problemas con unirse, lea la respuesta de Wes continuación. Tenía una marca de tiempo duplicada.
Gracias, eso fue todo. Realmente lo aprecio –