hace
años escrito por PHP4, simplemente escoger su distribución:
<?php
define('RandomGaussian', 'gaussian') ; // gaussianWeightedRandom()
define('RandomBell', 'bell') ; // bellWeightedRandom()
define('RandomGaussianRising', 'gaussianRising') ; // gaussianWeightedRisingRandom()
define('RandomGaussianFalling', 'gaussianFalling') ; // gaussianWeightedFallingRandom()
define('RandomGamma', 'gamma') ; // gammaWeightedRandom()
define('RandomGammaQaD', 'gammaQaD') ; // QaDgammaWeightedRandom()
define('RandomLogarithmic10', 'log10') ; // logarithmic10WeightedRandom()
define('RandomLogarithmic', 'log') ; // logarithmicWeightedRandom()
define('RandomPoisson', 'poisson') ; // poissonWeightedRandom()
define('RandomDome', 'dome') ; // domeWeightedRandom()
define('RandomSaw', 'saw') ; // sawWeightedRandom()
define('RandomPyramid', 'pyramid') ; // pyramidWeightedRandom()
define('RandomLinear', 'linear') ; // linearWeightedRandom()
define('RandomUnweighted', 'non') ; // nonWeightedRandom()
function mkseed()
{
srand(hexdec(substr(md5(microtime()), -8)) & 0x7fffffff) ;
} // function mkseed()
/*
function factorial($in) {
if ($in == 1) {
return $in ;
}
return ($in * factorial($in - 1.0)) ;
} // function factorial()
function factorial($in) {
$out = 1 ;
for ($i = 2; $i <= $in; $i++) {
$out *= $i ;
}
return $out ;
} // function factorial()
*/
function random_0_1()
{
// returns random number using mt_rand() with a flat distribution from 0 to 1 inclusive
//
return (float) mt_rand()/(float) mt_getrandmax() ;
} // random_0_1()
function random_PN()
{
// returns random number using mt_rand() with a flat distribution from -1 to 1 inclusive
//
return (2.0 * random_0_1()) - 1.0 ;
} // function random_PN()
function gauss()
{
static $useExists = false ;
static $useValue ;
if ($useExists) {
// Use value from a previous call to this function
//
$useExists = false ;
return $useValue ;
} else {
// Polar form of the Box-Muller transformation
//
$w = 2.0 ;
while (($w >= 1.0) || ($w == 0.0)) {
$x = random_PN() ;
$y = random_PN() ;
$w = ($x * $x) + ($y * $y) ;
}
$w = sqrt((-2.0 * log($w))/$w) ;
// Set value for next call to this function
//
$useValue = $y * $w ;
$useExists = true ;
return $x * $w ;
}
} // function gauss()
function gauss_ms($mean,
$stddev)
{
// Adjust our gaussian random to fit the mean and standard deviation
// The division by 4 is an arbitrary value to help fit the distribution
// within our required range, and gives a best fit for $stddev = 1.0
//
return gauss() * ($stddev/4) + $mean;
} // function gauss_ms()
function gaussianWeightedRandom($LowValue,
$maxRand,
$mean=0.0,
$stddev=2.0)
{
// Adjust a gaussian random value to fit within our specified range
// by 'trimming' the extreme values as the distribution curve
// approaches +/- infinity
$rand_val = $LowValue + $maxRand ;
while (($rand_val < $LowValue) || ($rand_val >= ($LowValue + $maxRand))) {
$rand_val = floor(gauss_ms($mean,$stddev) * $maxRand) + $LowValue ;
$rand_val = ($rand_val + $maxRand)/2 ;
}
return $rand_val ;
} // function gaussianWeightedRandom()
function bellWeightedRandom($LowValue,
$maxRand)
{
return gaussianWeightedRandom($LowValue, $maxRand, 0.0, 1.0) ;
} // function bellWeightedRandom()
function gaussianWeightedRisingRandom($LowValue,
$maxRand)
{
// Adjust a gaussian random value to fit within our specified range
// by 'trimming' the extreme values as the distribution curve
// approaches +/- infinity
// The division by 4 is an arbitrary value to help fit the distribution
// within our required range
$rand_val = $LowValue + $maxRand ;
while (($rand_val < $LowValue) || ($rand_val >= ($LowValue + $maxRand))) {
$rand_val = $maxRand - round((abs(gauss())/4) * $maxRand) + $LowValue ;
}
return $rand_val ;
} // function gaussianWeightedRisingRandom()
function gaussianWeightedFallingRandom($LowValue,
$maxRand)
{
// Adjust a gaussian random value to fit within our specified range
// by 'trimming' the extreme values as the distribution curve
// approaches +/- infinity
// The division by 4 is an arbitrary value to help fit the distribution
// within our required range
$rand_val = $LowValue + $maxRand ;
while (($rand_val < $LowValue) || ($rand_val >= ($LowValue + $maxRand))) {
$rand_val = floor((abs(gauss())/4) * $maxRand) + $LowValue ;
}
return $rand_val ;
} // function gaussianWeightedFallingRandom()
function logarithmic($mean=1.0, $lambda=5.0)
{
return ($mean * -log(random_0_1()))/$lambda ;
} // function logarithmic()
function logarithmicWeightedRandom($LowValue,
$maxRand)
{
do {
$rand_val = logarithmic() ;
} while ($rand_val > 1) ;
return floor($rand_val * $maxRand) + $LowValue ;
} // function logarithmicWeightedRandom()
function logarithmic10($lambda=0.5)
{
return abs(-log10(random_0_1())/$lambda) ;
} // function logarithmic10()
function logarithmic10WeightedRandom($LowValue,
$maxRand)
{
do {
$rand_val = logarithmic10() ;
} while ($rand_val > 1) ;
return floor($rand_val * $maxRand) + $LowValue ;
} // function logarithmic10WeightedRandom()
function gamma($lambda=3.0)
{
$wLambda = $lambda + 1.0 ;
if ($lambda <= 8.0) {
// Use direct method, adding waiting times
$x = 1.0 ;
for ($j = 1; $j <= $wLambda; $j++) {
$x *= random_0_1() ;
}
$x = -log($x) ;
} else {
// Use rejection method
do {
do {
// Generate the tangent of a random angle, the equivalent of
// $y = tan(pi * random_0_1())
do {
$v1 = random_0_1() ;
$v2 = random_PN() ;
} while (($v1 * $v1 + $v2 * $v2) > 1.0) ;
$y = $v2/$v1 ;
$s = sqrt(2.0 * $lambda + 1.0) ;
$x = $s * $y + $lambda ;
// Reject in the region of zero probability
} while ($x <= 0.0) ;
// Ratio of probability function to comparison function
$e = (1.0 + $y * $y) * exp($lambda * log($x/$lambda) - $s * $y) ;
// Reject on the basis of a second uniform deviate
} while (random_0_1() > $e) ;
}
return $x ;
} // function gamma()
function gammaWeightedRandom($LowValue,
$maxRand)
{
do {
$rand_val = gamma()/12 ;
} while ($rand_val > 1) ;
return floor($rand_val * $maxRand) + $LowValue ;
} // function gammaWeightedRandom()
function QaDgammaWeightedRandom($LowValue,
$maxRand)
{
return round((asin(random_0_1()) + (asin(random_0_1()))) * $maxRand/pi()) + $LowValue ;
} // function QaDgammaWeightedRandom()
function gammaln($in)
{
$tmp = $in + 4.5 ;
$tmp -= ($in - 0.5) * log($tmp) ;
$ser = 1.000000000190015
+ (76.18009172947146/$in)
- (86.50532032941677/($in + 1.0))
+ (24.01409824083091/($in + 2.0))
- (1.231739572450155/($in + 3.0))
+ (0.1208650973866179e-2/($in + 4.0))
- (0.5395239384953e-5/($in + 5.0)) ;
return (log(2.5066282746310005 * $ser) - $tmp) ;
} // function gammaln()
function poisson($lambda=1.0)
{
static $oldLambda ;
static $g, $sq, $alxm ;
if ($lambda <= 12.0) {
// Use direct method
if ($lambda <> $oldLambda) {
$oldLambda = $lambda ;
$g = exp(-$lambda) ;
}
$x = -1 ;
$t = 1.0 ;
do {
++$x ;
$t *= random_0_1() ;
} while ($t > $g) ;
} else {
// Use rejection method
if ($lambda <> $oldLambda) {
$oldLambda = $lambda ;
$sq = sqrt(2.0 * $lambda) ;
$alxm = log($lambda) ;
$g = $lambda * $alxm - gammaln($lambda + 1.0) ;
}
do {
do {
// $y is a deviate from a Lorentzian comparison function
$y = tan(pi() * random_0_1()) ;
$x = $sq * $y + $lambda ;
// Reject if close to zero probability
} while ($x < 0.0) ;
$x = floor($x) ;
// Ratio of the desired distribution to the comparison function
// We accept or reject by comparing it to another uniform deviate
// The factor 0.9 is used so that $t never exceeds 1
$t = 0.9 * (1.0 + $y * $y) * exp($x * $alxm - gammaln($x + 1.0) - $g) ;
} while (random_0_1() > $t) ;
}
return $x ;
} // function poisson()
function poissonWeightedRandom($LowValue,
$maxRand)
{
do {
$rand_val = poisson()/$maxRand ;
} while ($rand_val > 1) ;
return floor($x * $maxRand) + $LowValue ;
} // function poissonWeightedRandom()
function binomial($lambda=6.0)
{
}
function domeWeightedRandom($LowValue,
$maxRand)
{
return floor(sin(random_0_1() * (pi()/2)) * $maxRand) + $LowValue ;
} // function bellWeightedRandom()
function sawWeightedRandom($LowValue,
$maxRand)
{
return floor((atan(random_0_1()) + atan(random_0_1())) * $maxRand/(pi()/2)) + $LowValue ;
} // function sawWeightedRandom()
function pyramidWeightedRandom($LowValue,
$maxRand)
{
return floor((random_0_1() + random_0_1())/2 * $maxRand) + $LowValue ;
} // function pyramidWeightedRandom()
function linearWeightedRandom($LowValue,
$maxRand)
{
return floor(random_0_1() * ($maxRand)) + $LowValue ;
} // function linearWeightedRandom()
function nonWeightedRandom($LowValue,
$maxRand)
{
return rand($LowValue,$maxRand+$LowValue-1) ;
} // function nonWeightedRandom()
function weightedRandom($Method,
$LowValue,
$maxRand)
{
switch($Method) {
case RandomGaussian :
$rVal = gaussianWeightedRandom($LowValue, $maxRand) ;
break ;
case RandomBell :
$rVal = bellWeightedRandom($LowValue, $maxRand) ;
break ;
case RandomGaussianRising :
$rVal = gaussianWeightedRisingRandom($LowValue, $maxRand) ;
break ;
case RandomGaussianFalling :
$rVal = gaussianWeightedFallingRandom($LowValue, $maxRand) ;
break ;
case RandomGamma :
$rVal = gammaWeightedRandom($LowValue, $maxRand) ;
break ;
case RandomGammaQaD :
$rVal = QaDgammaWeightedRandom($LowValue, $maxRand) ;
break ;
case RandomLogarithmic10 :
$rVal = logarithmic10WeightedRandom($LowValue, $maxRand) ;
break ;
case RandomLogarithmic :
$rVal = logarithmicWeightedRandom($LowValue, $maxRand) ;
break ;
case RandomPoisson :
$rVal = poissonWeightedRandom($LowValue, $maxRand) ;
break ;
case RandomDome :
$rVal = domeWeightedRandom($LowValue, $maxRand) ;
break ;
case RandomSaw :
$rVal = sawWeightedRandom($LowValue, $maxRand) ;
break ;
case RandomPyramid :
$rVal = pyramidWeightedRandom($LowValue, $maxRand) ;
break ;
case RandomLinear :
$rVal = linearWeightedRandom($LowValue, $maxRand) ;
break ;
default :
$rVal = nonWeightedRandom($LowValue, $maxRand) ;
break ;
}
return $rVal;
}
?>
Encontré este Glosario de estadísticas [http://www.stats.gla.ac.uk/steps/glossary/probability_distributions.html#cdf]. Podría ayudar. – IAbstract
No lo entiendo del todo. ¿Tiene 10k números de coma flotante entre 0 y 70 que desea distribuir en un conjunto de 150k? –
@Jonas Elfström: Bueno, al revés. Quiero generar 150k números de coma flotante aleatorios con la distribución especificada ... – ircmaxell