Es similar a un problema que re Recientemente tuvo que separar las colonias bacterianas que crecían en placas de agar. Realicé una transformación de distancia en la imagen de umbral (en su caso, tendrá que invertirla). Luego se encontraron los picos del mapa de distancia (calculando la diferencia entre un mapa de distancia dilatado y el mapa de distancia y encontrando los valores cero). Luego, asumí que cada pico era el centro de un círculo (moneda) y el valor del pico en el mapa de distancia era el radio del círculo.
Este es el resultado de la imagen después de esta tubería:
Soy nuevo en OpenCV, y C++ por lo que mi código es probablemente muy desordenado, pero lo hice:
int main(int argc, char** argv){
cv::Mat objects, distance,peaks,results;
std::vector<std::vector<cv::Point> > contours;
objects=cv::imread("CUfWj.jpg");
objects.copyTo(results);
cv::cvtColor(objects, objects, CV_BGR2GRAY);
//THIS IS THE LINE TO BLUR THE IMAGE CF COMMENTS OF THIS POST
cv::blur(objects,objects,cv::Size(3,3));
cv::threshold(objects,objects,125,255,cv::THRESH_BINARY_INV);
/*Applies a distance transform to "objects".
* The result is saved in "distance" */
cv::distanceTransform(objects,distance,CV_DIST_L2,CV_DIST_MASK_5);
/* In order to find the local maxima, "distance"
* is subtracted from the result of the dilatation of
* "distance". All the peaks keep the save value */
cv::dilate(distance,peaks,cv::Mat(),cv::Point(-1,-1),3);
cv::dilate(objects,objects,cv::Mat(),cv::Point(-1,-1),3);
/* Now all the peaks should be exactely 0*/
peaks=peaks-distance;
/* And the non-peaks 255*/
cv::threshold(peaks,peaks,0,255,cv::THRESH_BINARY);
peaks.convertTo(peaks,CV_8U);
/* Only the zero values of "peaks" that are non-zero
* in "objects" are the real peaks*/
cv::bitwise_xor(peaks,objects,peaks);
/* The peaks that are distant from less than
* 2 pixels are merged by dilatation */
cv::dilate(peaks,peaks,cv::Mat(),cv::Point(-1,-1),1);
/* In order to map the peaks, findContours() is used.
* The results are stored in "contours" */
cv::findContours(peaks, contours, CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE);
/* The next steps are applied only if, at least,
* one contour exists */
cv::imwrite("CUfWj2.jpg",peaks);
if(contours.size()>0){
/* Defines vectors to store the moments of the peaks, the center
* and the theoritical circles of the object of interest*/
std::vector <cv::Moments> moms(contours.size());
std::vector <cv::Point> centers(contours.size());
std::vector<cv::Vec3f> circles(contours.size());
float rad,x,y;
/* Caculates the moments of each peak and then the center of the peak
* which are approximatively the center of each objects of interest*/
for(unsigned int i=0;i<contours.size();i++) {
moms[i]= cv::moments(contours[i]);
centers[i]= cv::Point(moms[i].m10/moms[i].m00,moms[i].m01/moms[i].m00);
x= (float) (centers[i].x);
y= (float) (centers[i].y);
if(x>0 && y>0){
rad= (float) (distance.at<float>((int)y,(int)x)+1);
circles[i][0]= x;
circles[i][3]= y;
circles[i][2]= rad;
cv::circle(results,centers[i],rad+1,cv::Scalar(255, 0,0), 2, 4, 0);
}
}
cv::imwrite("CUfWj2.jpg",results);
}
return 1;
}
Tienes el mejor resultado por cierto ... ¡Intentaré esto en JavaCV esta noche! –
+1 enfoque interesante. – karlphillip
** Sin embargo **, [la imagen que obtuve de su código] (http://imageshack.us/photo/my-images/526/58131003.jpg/) es un poco diferente de la que nos mostró. – karlphillip