estoy recibiendo el siguiente error cuando se realiza la función de selección recursiva con validación cruzada:TypeError: sólo matrices de enteros con un elemento se pueden convertir a un índice
Traceback (most recent call last):
File "/Users/.../srl/main.py", line 32, in <module>
argident_sys.train_classifier()
File "/Users/.../srl/identification.py", line 194, in train_classifier
feat_selector.fit(train_argcands_feats,train_argcands_target)
File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/sklearn/feature_selection/rfe.py", line 298, in fit
ranking_ = rfe.fit(X[train], y[train]).ranking_
TypeError: only integer arrays with one element can be converted to an index
El código que genera el error es la siguiente :
def train_classifier(self):
# Get the argument candidates
argcands = self.get_argcands(self.reader)
# Extract the necessary features from the argument candidates
train_argcands_feats = []
train_argcands_target = []
for argcand in argcands:
train_argcands_feats.append(self.extract_features(argcand))
if argcand["info"]["label"] == "NULL":
train_argcands_target.append("NULL")
else:
train_argcands_target.append("ARG")
# Transform the features to the format required by the classifier
self.feat_vectorizer = DictVectorizer()
train_argcands_feats = self.feat_vectorizer.fit_transform(train_argcands_feats)
# Transform the target labels to the format required by the classifier
self.target_names = list(set(train_argcands_target))
train_argcands_target = [self.target_names.index(target) for target in train_argcands_target]
## Train the appropriate supervised model
# Recursive Feature Elimination
self.classifier = LogisticRegression()
feat_selector = RFECV(estimator=self.classifier, step=1, cv=StratifiedKFold(train_argcands_target, 10))
feat_selector.fit(train_argcands_feats,train_argcands_target)
print feat_selector.n_features_
print feat_selector.support_
print feat_selector.ranking_
print feat_selector.cv_scores_
return
sé que también debería realizar GridSearch de los parámetros del clasificador de regresión logística, pero no creo que ese es el origen del error (o no?).
Debo mencionar que estoy probando con alrededor de 50 características, y casi todas son categóricas (es por eso que utilizo DictVectorizer para transformarlas adecuadamente).
Cualquier ayuda o guía que pueda darme es más que bienvenida. ¡Gracias!
EDITAR
He aquí algunos ejemplos de datos de entrenamiento:
train_argcands_feats = [{'head_lemma': u'Bras\xedlia', 'head': u'Bras\xedlia', 'head_postag': u'PROP'}, {'head_lemma': u'Pesquisa_Datafolha', 'head': u'Pesquisa_Datafolha', 'head_postag': u'N'}, {'head_lemma': u'dado', 'head': u'dado', 'head_postag': u'N'}, {'head_lemma': u'postura', 'head': u'postura', 'head_postag': u'N'}, {'head_lemma': u'maioria', 'head': u'maioria', 'head_postag': u'N'}, {'head_lemma': u'querer', 'head': u'quer', 'head_postag': u'V-FIN'}, {'head_lemma': u'PT', 'head': u'PT', 'head_postag': u'PROP'}, {'head_lemma': u'participar', 'head': u'participando', 'head_postag': u'V-GER'}, {'head_lemma': u'surpreendente', 'head': u'supreendente', 'head_postag': u'ADJ'}, {'head_lemma': u'Bras\xedlia', 'head': u'Bras\xedlia', 'head_postag': u'PROP'}, {'head_lemma': u'Pesquisa_Datafolha', 'head': u'Pesquisa_Datafolha', 'head_postag': u'N'}, {'head_lemma': u'revelar', 'head': u'revela', 'head_postag': u'V-FIN'}, {'head_lemma': u'recusar', 'head': u'recusando', 'head_postag': u'V-GER'}, {'head_lemma': u'maioria', 'head': u'maioria', 'head_postag': u'N'}, {'head_lemma': u'PT', 'head': u'PT', 'head_postag': u'PROP'}, {'head_lemma': u'participar', 'head': u'participando', 'head_postag': u'V-GER'}, {'head_lemma': u'surpreendente', 'head': u'supreendente', 'head_postag': u'ADJ'}, {'head_lemma': u'Bras\xedlia', 'head': u'Bras\xedlia', 'head_postag': u'PROP'}, {'head_lemma': u'Pesquisa_Datafolha', 'head': u'Pesquisa_Datafolha', 'head_postag': u'N'}, {'head_lemma': u'revelar', 'head': u'revela', 'head_postag': u'V-FIN'}, {'head_lemma': u'governo', 'head': u'Governo', 'head_postag': u'N'}, {'head_lemma': u'de', 'head': u'de', 'head_postag': u'PRP'}, {'head_lemma': u'governo', 'head': u'Governo', 'head_postag': u'N'}, {'head_lemma': u'recusar', 'head': u'recusando', 'head_postag': u'V-GER'}, {'head_lemma': u'maioria', 'head': u'maioria', 'head_postag': u'N'}, {'head_lemma': u'querer', 'head': u'quer', 'head_postag': u'V-FIN'}, {'head_lemma': u'PT', 'head': u'PT', 'head_postag': u'PROP'}, {'head_lemma': u'surpreendente', 'head': u'supreendente', 'head_postag': u'ADJ'}, {'head_lemma': u'Bras\xedlia', 'head': u'Bras\xedlia', 'head_postag': u'PROP'}, {'head_lemma': u'Pesquisa_Datafolha', 'head': u'Pesquisa_Datafolha', 'head_postag': u'N'}, {'head_lemma': u'revelar', 'head': u'revela', 'head_postag': u'V-FIN'}, {'head_lemma': u'muito', 'head': u'Muitas', 'head_postag': u'PRON-DET'}, {'head_lemma': u'prioridade', 'head': u'prioridades', 'head_postag': u'N'}, {'head_lemma': u'com', 'head': u'com', 'head_postag': u'PRP'}, {'head_lemma': u'prioridade', 'head': u'prioridades', 'head_postag': u'N'}]
train_argcands_target = ['NULL', 'ARG', 'ARG', 'ARG', 'NULL', 'NULL', 'NULL', 'NULL', 'NULL', 'NULL', 'NULL', 'NULL', 'ARG', 'ARG', 'ARG', 'ARG', 'NULL', 'NULL', 'NULL', 'NULL', 'ARG', 'NULL', 'NULL', 'NULL', 'NULL', 'NULL', 'ARG', 'NULL', 'NULL', 'NULL', 'NULL', 'ARG', 'ARG', 'NULL', 'NULL']
De acuerdo con el seguimiento de pila, el problema está dentro de su llamada 'feat_selector.fit (train_argcands_feats, train_argcands_target)'. ¿'RFECV' es una clase que creas o es una biblioteca? ¿Es posible publicar su código 'RFECV.fit()'? – acattle
@acattle Es una biblioteca de scikit-learn: http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html – feralvam
@acattle ¿dónde estás viendo eso? – XORcist