Escribí una clase que prueba la igualdad, menor que, y mayor que con dos dobles en Java. Mi caso general es comparar precios que pueden tener una precisión de medio centavo. 59.005 comparado con 59.395. ¿El épsilon que elegí es adecuado para esos casos?Java comparación doble epsilon
private final static double EPSILON = 0.00001;
/**
* Returns true if two doubles are considered equal. Tests if the absolute
* difference between two doubles has a difference less then .00001. This
* should be fine when comparing prices, because prices have a precision of
* .001.
*
* @param a double to compare.
* @param b double to compare.
* @return true true if two doubles are considered equal.
*/
public static boolean equals(double a, double b){
return a == b ? true : Math.abs(a - b) < EPSILON;
}
/**
* Returns true if two doubles are considered equal. Tests if the absolute
* difference between the two doubles has a difference less then a given
* double (epsilon). Determining the given epsilon is highly dependant on the
* precision of the doubles that are being compared.
*
* @param a double to compare.
* @param b double to compare
* @param epsilon double which is compared to the absolute difference of two
* doubles to determine if they are equal.
* @return true if a is considered equal to b.
*/
public static boolean equals(double a, double b, double epsilon){
return a == b ? true : Math.abs(a - b) < epsilon;
}
/**
* Returns true if the first double is considered greater than the second
* double. Test if the difference of first minus second is greater then
* .00001. This should be fine when comparing prices, because prices have a
* precision of .001.
*
* @param a first double
* @param b second double
* @return true if the first double is considered greater than the second
* double
*/
public static boolean greaterThan(double a, double b){
return greaterThan(a, b, EPSILON);
}
/**
* Returns true if the first double is considered greater than the second
* double. Test if the difference of first minus second is greater then
* a given double (epsilon). Determining the given epsilon is highly
* dependant on the precision of the doubles that are being compared.
*
* @param a first double
* @param b second double
* @return true if the first double is considered greater than the second
* double
*/
public static boolean greaterThan(double a, double b, double epsilon){
return a - b > epsilon;
}
/**
* Returns true if the first double is considered less than the second
* double. Test if the difference of second minus first is greater then
* .00001. This should be fine when comparing prices, because prices have a
* precision of .001.
*
* @param a first double
* @param b second double
* @return true if the first double is considered less than the second
* double
*/
public static boolean lessThan(double a, double b){
return lessThan(a, b, EPSILON);
}
/**
* Returns true if the first double is considered less than the second
* double. Test if the difference of second minus first is greater then
* a given double (epsilon). Determining the given epsilon is highly
* dependant on the precision of the doubles that are being compared.
*
* @param a first double
* @param b second double
* @return true if the first double is considered less than the second
* double
*/
public static boolean lessThan(double a, double b, double epsilon){
return b - a > epsilon;
}
¡Ha despertado la ira de algunas personas aquí! Consulte aquí si realmente desea usar números de coma flotante: http://docs.sun.com/source/806-3568/ncg_goldberg.html – Loki
Aparte de otras cuestiones, reduzca las posibilidades de errores de codificación eliminando el código duplicado. El primer método estático se vuelve igual a (a, b, EPSILON); – nslntmnx
Hablando de belleza, 'a == b? true: x' se puede reemplazar por la versión mucho más agradable y fácil de leer 'a == b || x'. – Matthias