2009-03-02 22 views

Respuesta

12

Consulte Mads Kristensen's artículo para un HttpModule que encriptará/desencriptará todas sus cadenas de consulta. http://madskristensen.net/post/httpmodule-for-query-string-encryption

Su código utiliza un HttpModule para analizar HTML saliente para encriptar y reemplazar todas las cadenas de direcciones relativas. El HttpModule también captura las solicitudes entrantes y reescribe la url de solicitud para usar una cadena de consulta no encriptada.

Lo bueno es que puede colocar el módulo y su código no necesita saber cuándo las cadenas de cifrado están codificadas o no. Desde la perspectiva del código, las cadenas de consulta funcionan como siempre.

Hace más de cinco años que lo utilizamos y funciona muy bien.

+1

-1: ¡URL rota! –

+11

@AlexAngas En lugar de violín, parece que podrías haber usado ese tiempo para investigar dónde se movió la URL y cómo edité mi publicación para reflejar eso. Lo publiqué hace casi 5 años. Pero he actualizado la URL. – slolife

+2

O ahorre su tiempo y el de la comunidad al escribir una respuesta que se mantendrá. http://meta.stackexchange.com/a/7658/6651. Lo siento, sin ánimo de ofender. –

1

Cree una cadena de pares clave/valor. Cifrelo. Base64 it. Ahora, sólo hay una variable de cadena de consulta llamado "x" o algo así, y el valor será la cadena base 64, por lo que como:

domain.com/MyPage?x=hfjhwke878979blahblah

A continuación, se descifra y el uso y ponerlo de nuevo en una estructura de datos clave/valor. Este es un enfoque.

+0

le puede dar algún ejemplo – Sarathy

+0

para convertir una cadena en base64: Convert.ToBase64String (Text.Encoding.ASCII.GetBytes (stringToConvert)) para convertir de nuevo a una cadena: Text.Encoding.ASCII.GetString (Convertir. FromBase64String (stringToConvertBack)) – hacker

+0

base64 contiene caracteres que no están permitidos en las URL. –

0

Puede cifrar la cadena con las herramientas de cifrado .NET integradas. Tendrá que usar Server.HtmlEncode/Server.HtmlDecode en la cadena para asegurarse de que la cadena cifrada sea compatible con HTTP.

Here es un artículo sobre encriptación en .NET.

2

archivo de código Estúpidamente desde hace tiempo que lo hará por usted, utilizando encriptación completa:

sugiere emplear el SessionID como la sal, entonces se cambia para cada usuario, pero es estable a través de las devoluciones de datos.

/////////////////////////////////////////////////////////////////////////////// 
// SAMPLE: Symmetric key encryption and decryption using Rijndael algorithm. 
// 
// To run this sample, create a new Visual C# project using the Console 
// Application template and replace the contents of the Class1.cs file with 
// the code below. 
// 
// THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, 
// EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED 
// WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE. 
// 
// Copyright (C) 2002 Obviex(TM). All rights reserved. 
// 
using System; 
using System.IO; 
using System.Text; 
using System.Security.Cryptography; 
namespace TDX.Portal.Utilities 
{ 
    /// <summary> 
    /// This class uses a symmetric key algorithm (Rijndael/AES) to encrypt and 
    /// decrypt data. As long as encryption and decryption routines use the same 
    /// parameters to generate the keys, the keys are guaranteed to be the same. 
    /// The class uses static functions with duplicate code to make it easier to 
    /// demonstrate encryption and decryption logic. In a real-life application, 
    /// this may not be the most efficient way of handling encryption, so - as 
    /// soon as you feel comfortable with it - you may want to redesign this class. 
    /// </summary> 
    public class RijndaelSimple 
    { 
     /// <summary> 
     /// Encrypts specified plaintext using Rijndael symmetric key algorithm 
     /// and returns a base64-encoded result. 
     /// </summary> 
     /// <param name="plainText"> 
     /// Plaintext value to be encrypted. 
     /// </param> 
     /// <param name="passPhrase"> 
     /// Passphrase from which a pseudo-random password will be derived. The 
     /// derived password will be used to generate the encryption key. 
     /// Passphrase can be any string. In this example we assume that this 
     /// passphrase is an ASCII string. 
     /// </param> 
     /// <param name="saltValue"> 
     /// Salt value used along with passphrase to generate password. Salt can 
     /// be any string. In this example we assume that salt is an ASCII string. 
     /// </param> 
     /// <param name="hashAlgorithm"> 
     /// Hash algorithm used to generate password. Allowed values are: "MD5" and 
     /// "SHA1". SHA1 hashes are a bit slower, but more secure than MD5 hashes. 
     /// </param> 
     /// <param name="passwordIterations"> 
     /// Number of iterations used to generate password. One or two iterations 
     /// should be enough. 
     /// </param> 
     /// <param name="initVector"> 
     /// Initialization vector (or IV). This value is required to encrypt the 
     /// first block of plaintext data. For RijndaelManaged class IV must be 
     /// exactly 16 ASCII characters long. 
     /// </param> 
     /// <param name="keySize"> 
     /// Size of encryption key in bits. Allowed values are: 128, 192, and 256. 
     /// Longer keys are more secure than shorter keys. 
     /// </param> 
     /// <returns> 
     /// Encrypted value formatted as a base64-encoded string. 
     /// </returns> 
     public static string Encrypt(string plainText, 
            string passPhrase, 
            string saltValue, 
            string hashAlgorithm, 
            int passwordIterations, 
            string initVector, 
            int keySize) 
     { 
      // Convert strings into byte arrays. 
      // Let us assume that strings only contain ASCII codes. 
      // If strings include Unicode characters, use Unicode, UTF7, or UTF8 
      // encoding. 
      byte[] initVectorBytes = Encoding.UTF8.GetBytes(initVector); 
      byte[] saltValueBytes = Encoding.UTF8.GetBytes(saltValue); 

      // Convert our plaintext into a byte array. 
      // Let us assume that plaintext contains UTF8-encoded characters. 
      byte[] plainTextBytes = Encoding.UTF8.GetBytes(plainText); 

      // First, we must create a password, from which the key will be derived. 
      // This password will be generated from the specified passphrase and 
      // salt value. The password will be created using the specified hash 
      // algorithm. Password creation can be done in several iterations. 
      PasswordDeriveBytes password = new PasswordDeriveBytes(
                  passPhrase, 
                  saltValueBytes, 
                  hashAlgorithm, 
                  passwordIterations); 

      // Use the password to generate pseudo-random bytes for the encryption 
      // key. Specify the size of the key in bytes (instead of bits). 
      byte[] keyBytes = password.GetBytes(keySize/8); 

      // Create uninitialized Rijndael encryption object. 
      RijndaelManaged symmetricKey = new RijndaelManaged(); 

      // It is reasonable to set encryption mode to Cipher Block Chaining 
      // (CBC). Use default options for other symmetric key parameters. 
      symmetricKey.Mode = CipherMode.CBC; 

      // Generate encryptor from the existing key bytes and initialization 
      // vector. Key size will be defined based on the number of the key 
      // bytes. 
      ICryptoTransform encryptor = symmetricKey.CreateEncryptor(
                  keyBytes, 
                  initVectorBytes); 

      // Define memory stream which will be used to hold encrypted data. 
      MemoryStream memoryStream = new MemoryStream(); 

      // Define cryptographic stream (always use Write mode for encryption). 
      CryptoStream cryptoStream = new CryptoStream(memoryStream, 
                 encryptor, 
                 CryptoStreamMode.Write); 
      // Start encrypting. 
      cryptoStream.Write(plainTextBytes, 0, plainTextBytes.Length); 

      // Finish encrypting. 
      cryptoStream.FlushFinalBlock(); 

      // Convert our encrypted data from a memory stream into a byte array. 
      byte[] cipherTextBytes = memoryStream.ToArray(); 

      // Close both streams. 
      memoryStream.Close(); 
      cryptoStream.Close(); 

      // Convert encrypted data into a base64-encoded string. 
      string cipherText = Convert.ToBase64String(cipherTextBytes); 

      // Return encrypted string. 
      return cipherText; 
     } 

     /// <summary> 
     /// Decrypts specified ciphertext using Rijndael symmetric key algorithm. 
     /// </summary> 
     /// <param name="cipherText"> 
     /// Base64-formatted ciphertext value. 
     /// </param> 
     /// <param name="passPhrase"> 
     /// Passphrase from which a pseudo-random password will be derived. The 
     /// derived password will be used to generate the encryption key. 
     /// Passphrase can be any string. In this example we assume that this 
     /// passphrase is an ASCII string. 
     /// </param> 
     /// <param name="saltValue"> 
     /// Salt value used along with passphrase to generate password. Salt can 
     /// be any string. In this example we assume that salt is an ASCII string. 
     /// </param> 
     /// <param name="hashAlgorithm"> 
     /// Hash algorithm used to generate password. Allowed values are: "MD5" and 
     /// "SHA1". SHA1 hashes are a bit slower, but more secure than MD5 hashes. 
     /// </param> 
     /// <param name="passwordIterations"> 
     /// Number of iterations used to generate password. One or two iterations 
     /// should be enough. 
     /// </param> 
     /// <param name="initVector"> 
     /// Initialization vector (or IV). This value is required to encrypt the 
     /// first block of plaintext data. For RijndaelManaged class IV must be 
     /// exactly 16 ASCII characters long. 
     /// </param> 
     /// <param name="keySize"> 
     /// Size of encryption key in bits. Allowed values are: 128, 192, and 256. 
     /// Longer keys are more secure than shorter keys. 
     /// </param> 
     /// <returns> 
     /// Decrypted string value. 
     /// </returns> 
     /// <remarks> 
     /// Most of the logic in this function is similar to the Encrypt 
     /// logic. In order for decryption to work, all parameters of this function 
     /// - except cipherText value - must match the corresponding parameters of 
     /// the Encrypt function which was called to generate the 
     /// ciphertext. 
     /// </remarks> 
     public static string Decrypt(string cipherText, 
            string passPhrase, 
            string saltValue, 
            string hashAlgorithm, 
            int passwordIterations, 
            string initVector, 
            int keySize) 
     { 
      // Convert strings defining encryption key characteristics into byte 
      // arrays. Let us assume that strings only contain ASCII codes. 
      // If strings include Unicode characters, use Unicode, UTF7, or UTF8 
      // encoding. 
      byte[] initVectorBytes = Encoding.UTF8.GetBytes(initVector); 
      byte[] saltValueBytes = Encoding.UTF8.GetBytes(saltValue); 

      // Convert our ciphertext into a byte array. 
      byte[] cipherTextBytes = Convert.FromBase64String(cipherText); 

      // First, we must create a password, from which the key will be 
      // derived. This password will be generated from the specified 
      // passphrase and salt value. The password will be created using 
      // the specified hash algorithm. Password creation can be done in 
      // several iterations. 
      PasswordDeriveBytes password = new PasswordDeriveBytes(
                  passPhrase, 
                  saltValueBytes, 
                  hashAlgorithm, 
                  passwordIterations); 

      // Use the password to generate pseudo-random bytes for the encryption 
      // key. Specify the size of the key in bytes (instead of bits). 
      byte[] keyBytes = password.GetBytes(keySize/8); 

      // Create uninitialized Rijndael encryption object. 
      RijndaelManaged symmetricKey = new RijndaelManaged(); 

      // It is reasonable to set encryption mode to Cipher Block Chaining 
      // (CBC). Use default options for other symmetric key parameters. 
      symmetricKey.Mode = CipherMode.CBC; 

      // Generate decryptor from the existing key bytes and initialization 
      // vector. Key size will be defined based on the number of the key 
      // bytes. 
      ICryptoTransform decryptor = symmetricKey.CreateDecryptor(
                  keyBytes, 
                  initVectorBytes); 

      // Define memory stream which will be used to hold encrypted data. 
      MemoryStream memoryStream = new MemoryStream(cipherTextBytes); 

      // Define cryptographic stream (always use Read mode for encryption). 
      CryptoStream cryptoStream = new CryptoStream(memoryStream, 
                  decryptor, 
                  CryptoStreamMode.Read); 

      // Since at this point we don't know what the size of decrypted data 
      // will be, allocate the buffer long enough to hold ciphertext; 
      // plaintext is never longer than ciphertext. 
      byte[] plainTextBytes = new byte[cipherTextBytes.Length]; 

      // Start decrypting. 
      int decryptedByteCount = cryptoStream.Read(plainTextBytes, 
                 0, 
                 plainTextBytes.Length); 

      // Close both streams. 
      memoryStream.Close(); 
      cryptoStream.Close(); 

      // Convert decrypted data into a string. 
      // Let us assume that the original plaintext string was UTF8-encoded. 
      string plainText = Encoding.UTF8.GetString(plainTextBytes, 
                 0, 
                 decryptedByteCount); 

      // Return decrypted string. 
      return plainText; 
     } 
    } 
} 
0

Suponga que tiene una URL como:

www.example.com/customerAdd.aspx?customerId=custId&password=weak 

Lo que puede hacer es tomar la cadena "customerId = CustID & contraseña = débil", encriptar con una clave, codificar el texto cifrado resultante de base 64 y ahora se convierte en la URL (algo así):

www.example.com/customerAdd.aspx?s=KJADSN1234kNmnanjnads 

Recuerde guardar la clave de cifrado en el SE lado de rver. No lo envíe al lado del cliente.

Ahora, si está utilizando la misma clave para todas las sesiones de cifrado, puede volver a utilizar la URL. es decir, puede enviar la URL a otra persona y pueden visitar la misma página. Pero este esquema reduce la seguridad de su encriptación.

Si cambia la clave de cifrado para cada sesión, obtendrá seguridad adicional, pero la URL no será válida después de que se cierre la sesión.

0

Intente crear un bloque de secuencia de comandos como the one on this page.

Le permite agregar una clase simple y encriptar/desencriptar una cadena usando una contraseña simple. Puede usar Session.SessionID como contraseña. Tenga en cuenta que los enlaces ya no funcionan una vez que el usuario cierra su ventana de navegador.

Nota: TripleDES no es muy seguro, consulte el artículo Microsoft this

+0

Cuando se trata de seguridad, Microsoft debe permanecer en silencio. – Nayef

Cuestiones relacionadas