Las diferencias sutiles se vuelven un poco más visibles cuando observa cuidadosamente el orden de ejecución de estos métodos.
class Meta_1(type):
def __call__(cls, *a, **kw):
print "entering Meta_1.__call__()"
rv = super(Meta_1, cls).__call__(*a, **kw)
print "exiting Meta_1.__call__()"
return rv
class Class_1(object):
__metaclass__ = Meta_1
def __new__(cls, *a, **kw):
print "entering Class_1.__new__()"
rv = super(Class_1, cls).__new__(cls, *a, **kw)
print "exiting Class_1.__new__()"
return rv
def __init__(self, *a, **kw):
print "executing Class_1.__init__()"
super(Class_1,self).__init__(*a, **kw)
Tenga en cuenta que el código anterior en realidad no lo hacen que no sea registramos lo que estamos haciendo nada. Cada método difiere a su implementación principal, es decir, su valor predeterminado. Así junto a la tala es más eficaz si simplemente había declarado cosas de la siguiente manera:
class Meta_1(type): pass
class Class_1(object):
__metaclass__ = Meta_1
Y ahora vamos a crear una instancia de Class_1
c = Class_1()
# entering Meta_1.__call__()
# entering Class_1.__new__()
# exiting Class_1.__new__()
# executing Class_1.__init__()
# exiting Meta_1.__call__()
Por lo tanto, si type
es el padre de Meta_1
podemos imaginar un pseudo implementación de type.__call__()
como tal:
class type:
def __call__(cls, *args, **kwarg):
# ... a few things could possibly be done to cls here... maybe... or maybe not...
# then we call cls.__new__() to get a new object
obj = cls.__new__(cls, *args, **kwargs)
# ... a few things done to obj here... maybe... or not...
# then we call obj.__init__()
obj.__init__(*args, **kwargs)
# ... maybe a few more things done to obj here
# then we return obj
return obj
Comunicación de la orde llamada r arriba de Meta_1.__call__()
(o en este caso type.__call__()
) se le da la oportunidad de influir sobre si las llamadas a Class_1.__new__()
y Class_1.__init__()
finalmente se realizan o no. En el transcurso de su ejecución, Meta_1.__call__()
podría devolver un objeto que ni siquiera ha sido tocado. Tomemos, por ejemplo, este enfoque para el patrón Singleton:
class Meta_2(type):
__Class_2_singleton__ = None
def __call__(cls, *a, **kw):
# if the singleton isn't present, create and register it
if not Meta_2.__Class_2_singleton__:
print "entering Meta_2.__call__()"
Meta_2.__Class_2_singleton__ = super(Meta_2, cls).__call__(*a, **kw)
print "exiting Meta_2.__call__()"
else:
print ("Class_2 singleton returning from Meta_2.__call__(), "
"super(Meta_2, cls).__call__() skipped")
# return singleton instance
return Meta_2.__Class_2_singleton__
class Class_2(object):
__metaclass__ = Meta_2
def __new__(cls, *a, **kw):
print "entering Class_2.__new__()"
rv = super(Class_2, cls).__new__(cls, *a, **kw)
print "exiting Class_2.__new__()"
return rv
def __init__(self, *a, **kw):
print "executing Class_2.__init__()"
super(Class_2, self).__init__(*a, **kw)
Observemos lo que sucede cuando se intenta varias veces para crear un objeto de tipo Class_2
a = Class_2()
# entering Meta_2.__call__()
# entering Class_2.__new__()
# exiting Class_2.__new__()
# executing Class_2.__init__()
# exiting Meta_2.__call__()
b = Class_2()
# Class_2 singleton returning from Meta_2.__call__(), super(Meta_2, cls).__call__() skipped
c = Class_2()
# Class_2 singleton returning from Meta_2.__call__(), super(Meta_2, cls).__call__() skipped
print a is b is c
True
Ahora observar esta aplicación utilizando una clase __new__()
método para tratar para lograr lo mismo.
import random
class Class_3(object):
__Class_3_singleton__ = None
def __new__(cls, *a, **kw):
# if singleton not present create and save it
if not Class_3.__Class_3_singleton__:
print "entering Class_3.__new__()"
Class_3.__Class_3_singleton__ = rv = super(Class_3, cls).__new__(cls, *a, **kw)
rv.random1 = random.random()
rv.random2 = random.random()
print "exiting Class_3.__new__()"
else:
print ("Class_3 singleton returning from Class_3.__new__(), "
"super(Class_3, cls).__new__() skipped")
return Class_3.__Class_3_singleton__
def __init__(self, *a, **kw):
print "executing Class_3.__init__()"
print "random1 is still {random1}".format(random1=self.random1)
# unfortunately if self.__init__() has some property altering actions
# they will affect our singleton each time we try to create an instance
self.random2 = random.random()
print "random2 is now {random2}".format(random2=self.random2)
super(Class_3, self).__init__(*a, **kw)
en cuenta que la aplicación anterior a pesar de registrarse correctamente un producto único en la clase, no impide __init__()
de ser llamado, esto sucede de manera implícita en type.__call__()
(type
siendo la metaclase defecto si no se especifica ninguno). Esto podría ocasionar algunos efectos no deseados:
a = Class_3()
# entering Class_3.__new__()
# exiting Class_3.__new__()
# executing Class_3.__init__()
# random1 is still 0.282724600824
# random2 is now 0.739298365475
b = Class_3()
# Class_3 singleton returning from Class_3.__new__(), super(Class_3, cls).__new__() skipped
# executing Class_3.__init__()
# random1 is still 0.282724600824
# random2 is now 0.247361634396
c = Class_3()
# Class_3 singleton returning from Class_3.__new__(), super(Class_3, cls).__new__() skipped
# executing Class_3.__init__()
# random1 is still 0.282724600824
# random2 is now 0.436144427555
d = Class_3()
# Class_3 singleton returning from Class_3.__new__(), super(Class_3, cls).__new__() skipped
# executing Class_3.__init__()
# random1 is still 0.282724600824
# random2 is now 0.167298405242
print a is b is c is d
# True
No! '__new__' en la metaclase ocurre cuando se crea _class_, no como _instance_.'__call__' sucede cuando' __new__' ocurriría sin la metaclase. – agf
¿Dónde digo que '__new__' está relacionado con la creación de instancias? – pyroscope
En realidad estaba preguntando sobre el '' __new__' de la clase, no sobre el '__new__' de la metaclase. –