Aquí hay una copia de @hughdbrown answer para python 3.6.1, hice que el conteo 5 veces más grande y agregué un código para probar la huella de memoria del proceso de python al final de cada ejecución.
Antes de que los downvoters lo tengan, tenga en cuenta que este método de contar el tamaño de los objetos no es preciso.
from datetime import datetime
import os
import psutil
process = psutil.Process(os.getpid())
ITER_COUNT = 1000 * 1000 * 5
RESULT=None
def makeL(i):
# Use this line to negate the effect of the strings on the test
# return "Python is smart and will only create one string with this line"
# Use this if you want to see the difference with 5 million unique strings
return "This is a sample string %s" % i
def timeit(method):
def timed(*args, **kw):
global RESULT
s = datetime.now()
RESULT = method(*args, **kw)
e = datetime.now()
sizeMb = process.memory_info().rss/1024/1024
sizeMbStr = "{0:,}".format(round(sizeMb, 2))
print('Time Taken = %s, \t%s, \tSize = %s' % (e - s, method.__name__, sizeMbStr))
return timed
class Obj(object):
def __init__(self, i):
self.i = i
self.l = makeL(i)
class SlotObj(object):
__slots__ = ('i', 'l')
def __init__(self, i):
self.i = i
self.l = makeL(i)
from collections import namedtuple
NT = namedtuple("NT", ["i", 'l'])
@timeit
def profile_dict_of_nt():
return [NT(i=i, l=makeL(i)) for i in range(ITER_COUNT)]
@timeit
def profile_list_of_nt():
return dict((i, NT(i=i, l=makeL(i))) for i in range(ITER_COUNT))
@timeit
def profile_dict_of_dict():
return dict((i, {'i': i, 'l': makeL(i)}) for i in range(ITER_COUNT))
@timeit
def profile_list_of_dict():
return [{'i': i, 'l': makeL(i)} for i in range(ITER_COUNT)]
@timeit
def profile_dict_of_obj():
return dict((i, Obj(i)) for i in range(ITER_COUNT))
@timeit
def profile_list_of_obj():
return [Obj(i) for i in range(ITER_COUNT)]
@timeit
def profile_dict_of_slot():
return dict((i, SlotObj(i)) for i in range(ITER_COUNT))
@timeit
def profile_list_of_slot():
return [SlotObj(i) for i in range(ITER_COUNT)]
profile_dict_of_nt()
profile_list_of_nt()
profile_dict_of_dict()
profile_list_of_dict()
profile_dict_of_obj()
profile_list_of_obj()
profile_dict_of_slot()
profile_list_of_slot()
y estos son mis resultados
Time Taken = 0:00:07.018720, provile_dict_of_nt, Size = 951.83
Time Taken = 0:00:07.716197, provile_list_of_nt, Size = 1,084.75
Time Taken = 0:00:03.237139, profile_dict_of_dict, Size = 1,926.29
Time Taken = 0:00:02.770469, profile_list_of_dict, Size = 1,778.58
Time Taken = 0:00:07.961045, profile_dict_of_obj, Size = 1,537.64
Time Taken = 0:00:05.899573, profile_list_of_obj, Size = 1,458.05
Time Taken = 0:00:06.567684, profile_dict_of_slot, Size = 1,035.65
Time Taken = 0:00:04.925101, profile_list_of_slot, Size = 887.49
Mi conclusión es:
- ranuras tienen la mejor capacidad de memoria y son razonables en la velocidad.
- Los dicts son los más rápidos, pero usan la mayor cantidad de memoria.
Realmente debería usar xrange en lugar de rango al generar secuencias de gran tamaño como esa. Por supuesto, ya que estás tratando con segundos de tiempo de ejecución, no habrá mucha diferencia, pero aun así, es un buen hábito. –