Hay muchas maneras de hacer esto, algunas muy rápido. Tuve que buscarlo.
los bits inverso en un byte
b = ((b * 0x0802LU & 0x22110LU) | (b * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16;
invertir una cantidad de N bits en paralelo en 5 * (N) operaciones LG:
unsigned int v; // 32-bit word to reverse bit order
// swap odd and even bits
v = ((v >> 1) & 0x55555555) | ((v & 0x55555555) << 1);
// swap consecutive pairs
v = ((v >> 2) & 0x33333333) | ((v & 0x33333333) << 2);
// swap nibbles ...
v = ((v >> 4) & 0x0F0F0F0F) | ((v & 0x0F0F0F0F) << 4);
// swap bytes
v = ((v >> 8) & 0x00FF00FF) | ((v & 0x00FF00FF) << 8);
// swap 2-byte long pairs
v = (v >> 16 ) | (v << 16);
los bits inversa en la palabra por tabla de búsqueda
static const unsigned char BitReverseTable256[256] =
{
# define R2(n) n, n + 2*64, n + 1*64, n + 3*64
# define R4(n) R2(n), R2(n + 2*16), R2(n + 1*16), R2(n + 3*16)
# define R6(n) R4(n), R4(n + 2*4), R4(n + 1*4), R4(n + 3*4)
R6(0), R6(2), R6(1), R6(3)
};
unsigned int v; // reverse 32-bit value, 8 bits at time
unsigned int c; // c will get v reversed
// Option 1:
c = (BitReverseTable256[v & 0xff] << 24) |
(BitReverseTable256[(v >> 8) & 0xff] << 16) |
(BitReverseTable256[(v >> 16) & 0xff] << 8) |
(BitReverseTable256[(v >> 24) & 0xff]);
// Option 2:
unsigned char * p = (unsigned char *) &v;
unsigned char * q = (unsigned char *) &c;
q[3] = BitReverseTable256[p[0]];
q[2] = BitReverseTable256[p[1]];
q[1] = BitReverseTable256[p[2]];
q[0] = BitReverseTable256[p[3]];
Consulte http://graphics.stanford.edu/~seander/bithacks.html#ReverseParallel para obtener más información y referencias.
Muéstrenos un código, al menos el pseudocódigo. Hacer tu tarea no es lo correcto para nosotros. – dirkgently