ejemplo Mínimo ejecutable y Prueba de usuario
Kernel module:
#include <asm/uaccess.h> /* copy_from_user */
#include <linux/debugfs.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/kernel.h> /* min */
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/proc_fs.h>
#include <linux/slab.h>
static const char *filename = "lkmc_mmap";
enum { BUFFER_SIZE = 4 };
struct mmap_info {
char *data;
};
/* After unmap. */
static void vm_close(struct vm_area_struct *vma)
{
pr_info("vm_close\n");
}
/* First page access. */
static int vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
struct page *page;
struct mmap_info *info;
pr_info("vm_fault\n");
info = (struct mmap_info *)vma->vm_private_data;
if (info->data) {
page = virt_to_page(info->data);
get_page(page);
vmf->page = page;
}
return 0;
}
/* Aftr mmap. TODO vs mmap, when can this happen at a different time than mmap? */
static void vm_open(struct vm_area_struct *vma)
{
pr_info("vm_open\n");
}
static struct vm_operations_struct vm_ops =
{
.close = vm_close,
.fault = vm_fault,
.open = vm_open,
};
static int mmap(struct file *filp, struct vm_area_struct *vma)
{
pr_info("mmap\n");
vma->vm_ops = &vm_ops;
vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
vma->vm_private_data = filp->private_data;
vm_open(vma);
return 0;
}
static int open(struct inode *inode, struct file *filp)
{
struct mmap_info *info;
pr_info("open\n");
info = kmalloc(sizeof(struct mmap_info), GFP_KERNEL);
pr_info("virt_to_phys = 0x%llx\n", (unsigned long long)virt_to_phys((void *)info));
info->data = (char *)get_zeroed_page(GFP_KERNEL);
memcpy(info->data, "asdf", BUFFER_SIZE);
filp->private_data = info;
return 0;
}
static ssize_t read(struct file *filp, char __user *buf, size_t len, loff_t *off)
{
struct mmap_info *info;
int ret;
pr_info("read\n");
info = filp->private_data;
ret = min(len, (size_t)BUFFER_SIZE);
if (copy_to_user(buf, info->data, ret)) {
ret = -EFAULT;
}
return ret;
}
static ssize_t write(struct file *filp, const char __user *buf, size_t len, loff_t *off)
{
struct mmap_info *info;
pr_info("write\n");
info = filp->private_data;
if (copy_from_user(info->data, buf, min(len, (size_t)BUFFER_SIZE))) {
return -EFAULT;
} else {
return len;
}
}
static int release(struct inode *inode, struct file *filp)
{
struct mmap_info *info;
pr_info("release\n");
info = filp->private_data;
free_page((unsigned long)info->data);
kfree(info);
filp->private_data = NULL;
return 0;
}
static const struct file_operations fops = {
.mmap = mmap,
.open = open,
.release = release,
.read = read,
.write = write,
};
static int myinit(void)
{
proc_create(filename, 0, NULL, &fops);
return 0;
}
static void myexit(void)
{
remove_proc_entry(filename, NULL);
}
module_init(myinit)
module_exit(myexit)
MODULE_LICENSE("GPL");
Userland test:
#define _XOPEN_SOURCE 700
#include <assert.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h> /* uintmax_t */
#include <string.h>
#include <sys/mman.h>
#include <unistd.h> /* sysconf */
#include "common.h" /* virt_to_phys_user */
enum { BUFFER_SIZE = 4 };
int main(int argc, char **argv)
{
int fd;
long page_size;
char *address1, *address2;
char buf[BUFFER_SIZE];
uintptr_t paddr;
if (argc < 2) {
printf("Usage: %s <mmap_file>\n", argv[0]);
return EXIT_FAILURE;
}
page_size = sysconf(_SC_PAGE_SIZE);
printf("open pathname = %s\n", argv[1]);
fd = open(argv[1], O_RDWR | O_SYNC);
if (fd < 0) {
perror("open");
assert(0);
}
printf("fd = %d\n", fd);
/* mmap twice for double fun. */
puts("mmap 1");
address1 = mmap(NULL, page_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
if (address1 == MAP_FAILED) {
perror("mmap");
assert(0);
}
puts("mmap 2");
address2 = mmap(NULL, page_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
if (address2 == MAP_FAILED) {
perror("mmap");
return EXIT_FAILURE;
}
assert(address1 != address2);
/* Read and modify memory. */
puts("access 1");
assert(!strcmp(address1, "asdf"));
/* vm_fault */
puts("access 2");
assert(!strcmp(address2, "asdf"));
/* vm_fault */
strcpy(address1, "qwer");
/* Also modified. So both virtual addresses point to the same physical address. */
assert(!strcmp(address2, "qwer"));
/* Check that the physical addresses are the same.
* They are, but TODO why virt_to_phys on kernel gives a different value? */
assert(!virt_to_phys_user(&paddr, getpid(), (uintptr_t)address1));
printf("paddr1 = 0x%jx\n", (uintmax_t)paddr);
assert(!virt_to_phys_user(&paddr, getpid(), (uintptr_t)address2));
printf("paddr2 = 0x%jx\n", (uintmax_t)paddr);
/* Check that modifications made from userland are also visible from the kernel. */
read(fd, buf, BUFFER_SIZE);
assert(!memcmp(buf, "qwer", BUFFER_SIZE));
/* Modify the data from the kernel, and check that the change is visible from userland. */
write(fd, "zxcv", 4);
assert(!strcmp(address1, "zxcv"));
assert(!strcmp(address2, "zxcv"));
/* Cleanup. */
puts("munmap 1");
if (munmap(address1, page_size)) {
perror("munmap");
assert(0);
}
puts("munmap 2");
if (munmap(address2, page_size)) {
perror("munmap");
assert(0);
}
puts("close");
close(fd);
return EXIT_SUCCESS;
}
No estoy seguro si esto ayuda, pero por lo que yo sé, [Perf] (http : //lxr.free-electrons.com/source/tools/perf/design.txt) subsistema en el núcleo proporciona un conjunto de páginas de la memoria del kernel (un anillo buffer, en realidad) que puede ser mapeado por aplicaciones de espacio de usuario. Su implementación podría dar algunos consejos sobre su pregunta, puede ser que valga la pena ver su código fuente. – Eugene