Mi mejor enfoque hasta ahora es: puntos que contienen
Cada círculo debe tener una izquierda más puntos. Por lo tanto, hace una lista de todos los puntos a la derecha de un punto que están potencialmente dentro de los límites de un círculo. Primero ordena los puntos por x, para hacer que el barrido esté sano.
Luego los ordena de nuevo, esta vez por el número de vecinos a la derecha que tienen, para que el punto con la mayoría de los vecinos se examine primero.
Luego examina cada punto, y para cada punto a la derecha, calcula un círculo donde este par de puntos está en el perímetro izquierdo. Luego cuenta los puntos dentro de dicho círculo.
Dado que los puntos se han ordenado por potencial, se pueden eliminar una vez que se consideran todos los nodos que podrían conducir a una mejor solución.
import random, math, time
from Tkinter import * # our UI
def sqr(x):
return x*x
class Point:
def __init__(self,x,y):
self.x = float(x)
self.y = float(y)
self.left = 0
self.right = []
def __repr__(self):
return "("+str(self.x)+","+str(self.y)+")"
def distance(self,other):
return math.sqrt(sqr(self.x-other.x)+sqr(self.y-other.y))
def equidist(left,right,dist):
u = (right.x-left.x)
v = (right.y-left.y)
if 0 != u:
r = math.sqrt(sqr(dist)-((sqr(u)+sqr(v))/4.))
theta = math.atan(v/u)
x = left.x+(u/2)-(r*math.sin(theta))
if x < left.x:
x = left.x+(u/2)+(r*math.sin(theta))
y = left.y+(v/2)-(r*math.cos(theta))
else:
y = left.y+(v/2)+(r*math.cos(theta))
else:
theta = math.asin(v/(2*dist))
x = left.x-(dist*math.cos(theta))
y = left.y + (v/2)
return Point(x,y)
class Vis:
def __init__(self):
self.frame = Frame(root)
self.canvas = Canvas(self.frame,bg="white",width=width,height=height)
self.canvas.pack()
self.frame.pack()
self.run()
def run(self):
self.count_calc0 = 0
self.count_calc1 = 0
self.count_calc2 = 0
self.count_calc3 = 0
self.count_calc4 = 0
self.count_calc5 = 0
self.prev_x = 0
self.best = -1
self.best_centre = []
for self.sweep in xrange(0,len(points)):
self.count_calc0 += 1
if len(points[self.sweep].right) <= self.best:
break
self.calc(points[self.sweep])
self.sweep = len(points) # so that draw() stops highlighting it
print "BEST",self.best+1, self.best_centre # count left-most point too
print "counts",self.count_calc0, self.count_calc1,self.count_calc2,self.count_calc3,self.count_calc4,self.count_calc5
self.draw()
def calc(self,p):
for self.right in p.right:
self.count_calc1 += 1
if (self.right.left + len(self.right.right)) < self.best:
# this can never help us
continue
self.count_calc2 += 1
self.centre = equidist(p,self.right,radius)
assert abs(self.centre.distance(p)-self.centre.distance(self.right)) < 1
count = 0
for p2 in p.right:
self.count_calc3 += 1
if self.centre.distance(p2) <= radius:
count += 1
if self.best < count:
self.count_calc4 += 4
self.best = count
self.best_centre = [self.centre]
elif self.best == count:
self.count_calc5 += 5
self.best_centre.append(self.centre)
self.draw()
self.frame.update()
time.sleep(0.1)
def draw(self):
self.canvas.delete(ALL)
# draw best circle
for best in self.best_centre:
self.canvas.create_oval(best.x-radius,best.y-radius,\
best.x+radius+1,best.y+radius+1,fill="red",\
outline="red")
# draw current circle
if self.sweep < len(points):
self.canvas.create_oval(self.centre.x-radius,self.centre.y-radius,\
self.centre.x+radius+1,self.centre.y+radius+1,fill="pink",\
outline="pink")
# draw all the connections
for p in points:
for p2 in p.right:
self.canvas.create_line(p.x,p.y,p2.x,p2.y,fill="lightGray")
# plot visited points
for i in xrange(0,self.sweep):
p = points[i]
self.canvas.create_line(p.x-2,p.y,p.x+3,p.y,fill="blue")
self.canvas.create_line(p.x,p.y-2,p.x,p.y+3,fill="blue")
# plot current point
if self.sweep < len(points):
p = points[self.sweep]
self.canvas.create_line(p.x-2,p.y,p.x+3,p.y,fill="red")
self.canvas.create_line(p.x,p.y-2,p.x,p.y+3,fill="red")
self.canvas.create_line(p.x,p.y,self.right.x,self.right.y,fill="red")
self.canvas.create_line(p.x,p.y,self.centre.x,self.centre.y,fill="cyan")
self.canvas.create_line(self.right.x,self.right.y,self.centre.x,self.centre.y,fill="cyan")
# plot unvisited points
for i in xrange(self.sweep+1,len(points)):
p = points[i]
self.canvas.create_line(p.x-2,p.y,p.x+3,p.y,fill="green")
self.canvas.create_line(p.x,p.y-2,p.x,p.y+3,fill="green")
radius = 60
diameter = radius*2
width = 800
height = 600
points = []
# make some points
for i in xrange(0,100):
points.append(Point(random.randrange(width),random.randrange(height)))
# sort points for find-the-right sweep
points.sort(lambda a, b: int(a.x)-int(b.x))
# work out those points to the right of each point
for i in xrange(0,len(points)):
p = points[i]
for j in xrange(i+1,len(points)):
p2 = points[j]
if p2.x > (p.x+diameter):
break
if (abs(p.y-p2.y) <= diameter) and \
p.distance(p2) < diameter:
p.right.append(p2)
p2.left += 1
# sort points in potential order for sweep, point with most right first
points.sort(lambda a, b: len(b.right)-len(a.right))
# debug
for p in points:
print p, p.left, p.right
# show it
root = Tk()
vis = Vis()
root.mainloop()
Entonces la pregunta es: ¿cómo calculamos/almacenamos eficientemente las intersecciones de los círculos? :) –